Options
Joseph, Edith
Résultat de la recherche
Fungal biogenic patina: optimization of an innovative conservation treatment for copper-based artefacts
2017, Albini, Monica, Joseph, Edith, Junier, Pilar
Les micro-organismes sont souvent considérés dangereux pour les biens culturels. Malgré cela, ils peuvent aussi être utilisés pour leur protection. En effet, certaines espèces fongiques sont connues pour leur capacité à produire de l'acide oxalique pour immobiliser des métaux lourds toxiques et, donc, détoxifier leur milieu. La biotechnologie a déjà exploité cette capacité d'immobiliser des métaux lourds sous forme d’oxalates métalliques dans le domaine du traitement des déchets. Le projet « biopatine » a tiré profit cette capacité pour modifier des produits de corrosion de cuivre actifs en des composés plus stables et moins solubles comme les oxalates de cuivre. La présence des oxalates de cuivre a été déjà observée sous forme de patines vertes sur des œuvres d’art en bronze à l’extérieur et ils n'ont pas été associés à de la corrosion cyclique. En outre, les oxalates de cuivre sont connus pour être extrêmement stables dans des atmosphères polluées en conditions acides (pH 3), fournissant une bonne protection aux sculptures à base de cuivre. Le projet « biopatine » a comme objectif la production de’ oxalates de cuivre comme composés passivant ayant la même composition que des minéraux de cuivre naturellement présents sur le patrimoine cuivreux (matériaux inorganiques) et l'amélioration de la compatibilité entre le traitement e la surface corrodée. Lors de projets précédents (FP6-EU-ARTECH, 2004-2009 et FP7-BAHAMAS, 2010-2012), l'espèce fongique la plus appropriée a été identifiée et des tentatives de production d’oxalates de cuivre ont été effectuées avec succès. L’objectif de cette thèse était d’optimiser le nouveau traitement biologique développé pour la conservation d’œuvres d’art en cuivre afin de transférer les tests de laboratoire à une mise ne pratique sur le terrain. Ce travail de thèse s'est concentré sur deux sujets principaux : l'étude du micro-organisme utilisé pour la production des oxalates de cuivre biogéniques et les matériaux traités, notamment cuivre et bronze. En ce qui concerne les matériaux traités, le but était de comprendre quels mécanismes protecteurs sont impliqués dans le traitement biopatine permettant de déterminer si ce traitement agit comme un inhibiteur de corrosion ou comme un coating. Le traitement biologique a été comparé à des traitements de conservation standards, la cire microcristalline comme coating et le benzotriazole comme inhibiteur de corrosion, et son comportement à long terme a été évalué par des procédures de vieillissement naturel et artificiel. En outre, l'influence des éléments de l’alliage, l’étain en particulier, sur le comportement du traitement biopatine a été examinée. Pour ce faire, un complément de techniques analytiques a été utilisé: chromatographie liquide à haute performance (HPLC), microscopie optique (OM), microscopie électronique à balayage (SEM) couplé avec spectroscopie à rayons X à dispersion d'énergie (EDS), spectroscopie infrarouge (FTIR), spectroscopie Raman, Spectroscopie d'Impédance Electrochimique (EIS) et colorimétrie. Les résultats de ce travail ont montré que le traitement biopatine se place parmi les inhibiteurs de corrosion plutôt que les revêtements. Le traitement biopatine peut aussi être utilisé pour remplacer le benzotriazole (BTA) comme traitement sans risques pour la santé et l’environnement et plus efficace pour la stabilisation des objets archéologiques. Il peut aussi être appliqué sur des objets en extérieur et son efficacité n'est pas influencée par la composition de l’alliage. En outre, le protocole d'application actuellement utilisé sur des artefacts réels a été développé. Finalement, basé sur les résultats de cette étude, un kit prêt à l'emploi est actuellement en évaluation pour une commercialisation et est mis à disposition des x conservateurs-restaurateurs., Microorganisms are often considered harmful for cultural heritage. However, they can also be used for its safeguarding. Indeed, some fungal species are known for their ability to produce oxalic acid in order to immobilize of toxic heavy metals and, therefore, detoxify their environmental. Biotechnology already exploited this ability to immobilize heavy metals in the field of waste treatment forming metal oxalates. The “biopatina project” used this ability in order to modify active copper corrosion products into more stable and less soluble compounds such as copper oxalates. The presence of copper oxalates as green patinas was already discovered on outdoor bronze artefacts and it was not associated with active corrosion. Furthermore, copper oxalates are known to be extremely stable in polluted atmospheres with acidic conditions (pH 3), providing good protection to copper-based artefacts. The “biopatina project” aims to produce copper oxalates as passivating compound having the same composition as naturally occurring copper minerals (inorganic materials) enhancing the compatibility of this treatment with the corroded surface of artefacts. During previous projects (FP6-EU-ARTECH, 2004-2009 and FP7-BAHAMAS, 2010-2012), the most suitable fungal specie to be used was identified and initial successful attempts to produce copper oxalates were performed. The aim of this thesis was to optimise this novel biological treatment for the conservation copper-based artefact in order to transfer it from the laboratory tests to real-praxis. This work focused on two main subjects: the study of the microorganism used for the production of biogenic copper oxalates and the treated material, namely copper and bronze. Regarding the treated material, the aim was to understand which protective mechanisms are involved in the biopatina treatment allowing to understand if such treatment acts as a corrosion inhibitor or as a coating. The biological treatment was compared to standard conservation treatment as microcrystalline wax (coating system) and benzotriazole (corrosion inhibitor) and its long-term behaviour was tested by natural and artificial ageing. Furthermore, the influence of alloying elements, particularly tin, on the behaviour of biopatina treatment was investigated. To do that, a complement of analytical techniques was used: high-performance liquid chromatography (HPLC), optical microscopy (OM), scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS), infrared spectroscopy (FTIR), Raman spectroscopy, electrochemical impedance spectroscopy (EIS) and colorimetry. The outcomes of this work showed that the biopatina treatment is positioned in the range of corrosion inhibitors rather than protective coatings. Biopatina treatment can be used to replace benzotriazole (BTA) solutions as innocuous and more efficient treatment for archaeological objects. It can also be applied on outdoor objects, regardless the geometry of exposure conditions and its efficiency is not influenced by the bronze composition. Furthermore, the application protocol currently used on real artefacts was developed. Finally, based on the outcome of this study, a ready-to-use kit is currently under evaluation for commercialization and available for small trials to conservators-restorers.
Protection of metal artifacts with the formation of metal–oxalates complexes by Beauveria bassiana
, Joseph, Edith, Cario, Sylvie, Simon, Anaële, Wörle, Marie, Mazzeo, Rocco, Junier, Pilar, Job, Daniel
Several fungi present high tolerance to toxic metals and some are able to transform metals into metal-oxalate complexes. In this study, the ability of Beauveria bassiana to produce copper oxalates was evaluated. Growth performance was tested on various copper-containing media. B. bassiana proved highly resistant to copper, tolerating concentrations of up to 20 g L-1, and precipitating copper oxalates on all media tested. Chromatographic analyses showed that this species produced oxalic acid as sole metal chelator. The production of metal-oxalates can be used in the restoration and conservation of archeological and modern metal artifacts. The production of copper oxalates was confirmed directly using metallic pieces (both archeological and modern). The conversion of corrosion products into copper oxalates was demonstrated as well. In order to assess whether the capability of B. bassiana to produce metal-oxalates could be applied to other metals, iron and silver were tested as well. Iron appears to be directly sequestered in the wall of the fungal hyphae forming oxalates. However, the formation of a homogeneous layer on the object is not yet optimal. On silver, a co-precipitation of copper and silver oxalates occurred. As this greenish patina would not be acceptable on silver objects, silver reduction was explored as a tarnishing remediation. First experiments showed the transformation of silver nitrate into nanoparticles of elemental silver by an unknown extracellular mechanism. The production of copper oxalates is immediately applicable for the conservation of copper-based artifacts. For iron and silver this is not yet the case. However, the vast ability of B. bassiana to transform toxic metals using different immobilization mechanisms seems to offer considerable possibilities for industrial applications, such as the bioremediation of contaminated soils or the green synthesis of chemicals.