Options
Joseph, Edith
Résultat de la recherche
Development and evaluation of sustainable hydrogels formulations for the microbial cleaning of metal historical artefacts.
2024, Cuvillier, Luana, Joseph, Edith, Stephan Von Reuss
Les objets en fer, cuivre et argent font partie intégrante du patrimoine culturel commun. Malheureusement, ces métaux seront inévitablement dégradés via le processus spontané de corrosion auquel ils sont sujets. Sur les surfaces des métaux historiques conservés en intérieur, ce phénomène donne lieu à la formation d’oxydes et/ou de sulfures dans la plupart des cas. Pour des raisons esthétiques ou fonctionnelles, ces objets sont souvent traités afin de retirer la corrosion. Plusieurs méthodes sont actuellement à la disposition des professionnels pour le nettoyage de ce type de substrat métallique. Néanmoins, aucun n’est entièrement satisfaisant, du fait de la présence de composés nocifs, du besoin d’équipement ou de compétences spécifiques ou encore la difficulté de contrôle pour ne pas endommager la surface à traiter. De plus, il y a une volonté croissante de se tourner vers des pratiques plus durables, qui prennent en considération à la fois la sécurité de l’objet, de l’opérateur mais également de l’environnement. Pour cette raison, d’autres possibilités ont été étudiées par différents groupes de recherches, comprenant l’utilisation de gels, en particulier d’hydrogels, pour véhiculer les solutions aqueuses de traitement. Ils permettent le confinement des solutions de traitement mais aussi des applications plus sélectives et moins invasives. En parallèle, de nouvelles tendances se tournent vers des solutions moins toxiques et plus proches de la nature. Par exemple, les traitements de conservation du patrimoine recourant au potentiel de divers microorganismes biologiques. Dans ce but, cette thèse cherche à développer et étudier un traitement de retrait de la corrosion combinant les deux approches, atteignant une solution fiable et entièrement biosourcée. La première étape consiste à sélectionner les composés biogéniques appropriés, en exploitant champignons et bactéries comme des usines chimiques à l’échelle microscopique pour l’absorption du fer, du cuivre ou de l’argent. A cette fin, l’interaction microbienne avec des métaux sous forme soluble ou insoluble a été évaluée. En particulier, cela a montré les performances notables d’Aspergillus niger et Beauveria bassiana pour le nettoyage de surfaces en base fer ou base cuivre respectivement, via la formation d’oxalates biogéniques. Aucun microorganisme ne s’est distingué pour la remédiation de l’argent. En outre, l’effet de métabolites secondaires, principalement des sidérophores et acides organiques, sur la dissolution de produits de corrosion a été étudiée grâce à l’ICP-OES. En particulier, bien que les acides se soient montrés exceptionnellement efficaces pour des pH bas, les sidérophores ont confirmé être des candidats remarquables pour la chélation du fer sur toute la gamme de pH étudiée. En ce qui concerne le cuivre, l’acide aminopolycarboxylique EDDS a montré des performances équivalentes à l’EDTA, un complexant communément utilisé mais dont la durabilité est interrogée. L’EDDS a aussi montré des capacités de réduction de l’argent soluble en nanoparticules. En seconde étape, pour véhiculer les solutions de métabolites, plusieurs polysaccharides ont été étudiés. En particulier la formulation d’un gel rigide à base de chitosan a été tentée et comparée aux caractéristiques de l’agar, pionnier dans le domaine. En outre, l’interaction entre les gels et les solutions de traitement sélectionnées en amont a été étudiée. La morphologie à l’échelle microscopique ainsi que les propriétés mécaniques n’ont pas montré l’interaction entre les réseaux polymériques et le soluté implémenté. Les propriétés de complexation de l’argent de la formulation développée ont été analysées grâce à des techniques spectroscopiques. Ces propriétés pourraient être exploitées de manière plus approfondies afin d’utiliser les hydrogels comme des systèmes de complexation, permettant de s’affranchir de l’utilisation d’une solution additionnelle, en suivant le principe du « moins c’est mieux » et ainsi tendre vers plus de sobriété. Des mesures rhéologiques et oximétriques ont aussi montré la propension de certains gels non rigides à laisser des résidus, avec la preuve de leur effet nocif sur les surfaces métalliques. Des tentatives pour trouver des méthodes de détection de ces résidus en utilisant des techniques d’imagerie ont permis des approches qualitatives, et potentiellement semi-quantitatives avec du travail supplémentaire, montrant que l’agar laisse des résidus ponctuels alors que la gomme xanthane laisse des résidus très étalés sur la surface. L’évaluation des agents actifs et polysaccharides combinés a été effectuée sur des échantillons corrodés artificiellement et naturellement, en recourant à une approche multi-analytique comprenant de la spectroscopie, de la spectrocolorimétrie ainsi que des analyses élémentaires et des observations micro- et macroscopiques. Les formulations fructueuses ont été testées sur des objets obtenus auprès d’institutions du patrimoine. Enfin, les risques environnementaux et pour la santé des formulations développées ont été évalués grâce à l’approche de l’Analyse du cycle de vie, montrant qu’à ce stade, les composés biosourcés ne sont pas nécessairement l’alternative la plus performante selon les hypothèses initiales et les critères évalués. Globalement, cette thèse a permis de développer des formulations, à partir de dérivés biologiques, pour le retrait de la corrosion sur les objets patrimoniaux ferreux et cuivreux, avec une vraie avancée vers l’utilisation effective de cette alternative par les professionnels du domaine. Des travaux ultérieurs pourraient être envisagés pour l’utilisation de microbes ou métabolites sur les surfaces en argent, mais également pour améliorer les performances globales en termes de durabilité. ABSTRACT Iron, copper and silver-based objects are a significant part of our cultural heritage. Unfortunately, these metals suffer inevitable degradation through the spontaneous process of corrosion towards which they naturally tend. On indoor-exposed historical metal surfaces, this phenomenon gives way to the formation of mainly oxide and/or sulfide compounds. For aesthetical or functional purposes, treatment of these surfaces is often carried out to remove the undesired corrosion phases. Various methods are currently available to professionals for the cleaning of this type of metallic substrate. However, none of them is entirely satisfactory, dealing with hazardous compounds, devices with limited availability or specific necessary skills, not completely efficient or difficult to control, sometimes resulting in the damage of the considered surface. In addition, there is the will to go towards more sustainable practices, taking into account the safety of the object, the operator as well as the environment. For this reason, research has been looking a t other possibilities, including the use of gels, in particular hydrogels, as carriers for aqueous treating solutions. They allow the con finement of the active solution along with more selective, less invasive application. Parallelly, new tendencies are opting for less toxic and more naturally based solutions. For instance, heritage preservation treatments based on the potential of a variety of microbiological organisms. To this purpose, the present thesis aims at developing and investigating a corrosion removal treatment combining both approaches, thus achieving a fully bio-derived reliable solution. The first step was to select adequate biogenic compounds, exploiting fungi and bacteria as microscale chemical factories for the uptake of iron, copper or silver ions. To this end, microbial interaction with soluble and insoluble metals were assessed. In particular, it showed Aspergillus niger’s and Beauveria bassiana’s significant performances to achieve cleaning on iron and copper substrates respectively through the biogenic formation of oxalates. No microorganism could be distinguished for the remediation of silver. In addition, the action of secondary metabolites, mainly siderophores and organic acids, on the dissolution of powdered corrosion products was investigated over time using ICP-OES. In particular, although acids perform outstandingly at low pH, siderophores were confirmed to be remarkable candidates for the chelation of iron at any pH. For copper, the aminopolycarboxylic acid EDDS showed performances competing with EDTA, a common chelator with sustainability concerns. The same compound also achieved reduction of soluble silver into nanoparticles. As second step, to deliver the metabolites solution, investigation of several polysaccharides was performed. In particular, formulation of a rigid chitosan-based gel was attempted and compared to agar characteristics. In addition, investigation of interactions between the gels and subsequent selected cleaning solutions was carried out. Microscale morphology and mechanical properties showed no evidence for interactions between the polymer network and the carried solutes. The silver uptaking properties of the developed formulation were also evaluated using spectroscopic techniques. These properties could be further exploited to use some hydrogels as “uptaking devices”, allowing to break-free from the use of an additional chelating solution, following the principle of less is more and achieve more simple formulations. Rheological and oximetric measurements also showed the “residues potential” of non-rigid gels along with their potential deleterious effects, respectively. Attempts at finding methods to detect these residues using imaging techniques achieved qualitative and semi-quantitative results showing that agar was leaving rather bulky, punctual residues whereas xanthan gum’s were spread out on the surface. Evaluation of the combined selected active agents and polysaccharides was performed on artificially and naturally corroded samples using a multi-analytical approach, including spectroscopy, spectrocolorimetry along with elemental analysis and micro and macro-observations. Successful applications were tested on real artefacts obtained from heritage institutions. Finally, environmental and health hazards of the developed formulations were evaluated using the Life Cycle Cycle AAssessment approach, showing biossessment approach, showing bio--derived compounds might not be, currently, the most derived compounds might not be, currently, the most performing, according to the initial hypothesis and the performing, according to the initial hypothesis and the considered criteria. Overall, this thesis allowed to develop alternative biologically derived formulations for the removal of corrosion on iron and copper artefacts, corrosion on iron and copper artefacts, with a real step towards effective practical use by professionals. Future work could be foreseen for the use of microbes or metabolites on silver--based surfaces along with further enhancing global sustainability performances.
Biological strategies for the preservation of waterlogged archaelogical wood
2020, Albelda Berenguer, Magdalena, Joseph, Edith, Junier, Pilar
Le bois archéologique gorgé d'eau est une partie essentielle de notre patrimoine culturel. Les objets en bois qui ont été préservés dans des sites gorgées d'eau fournissent des informations précieuses sur les civilisations passées. Cependant, le bois gorgé d'eau peut rencontrer de graves problèmes après l’excavation. Lorsque des espèces soufrées et de ferreuses se sont formées et accumulées pendant la période d'enfouissement, la précipitation de sels et l'acidification peuvent apparaître après exposition à l'oxygène, entraînant de graves problèmes structurels. Malheureusement, ces altérations sont souvent observées après que les objets aient été consolidés. Des procédés d'extraction chimique ou de neutralisation sont appliqués en réponse a ces problèmes. Actuellement, les nouvelles tendances optent pour des solutions moins toxiques et plus respectueuses de l'environnement. Par exemple, les traitements biologiques appliqués à la préservation d’artéfacts patrimoniaux basé sur le potentiel de divers métabolismes microbiologiques suscitent l’intérêt. Le but de cette thèse est de développer une méthode verte et durable qui éliminerait les composés soufrés et ferreux tout en maintenant la stabilité chimique et la structure physique du bois gorgé d’eau. Il existe peu de références de méthodes biologiques liées à la conservation des substrats organiques. De ce point de vue, l'extraction biotechnologique proposée ici est une approche innovante pour l'élimination des espèces de fer et soufre du bois. Cette méthode originale adopte deux stratégies différentes: 1) l'élimination du fer à l'aide de chélateurs microbiens du fer (sidérophores) et, 2) l'extraction d'espèces soufrées par oxydation avec des bactéries sélectionnées (Thiobacillus denitrificans). Les deux approches ont été étudiées directement sur les phases minérales couramment trouvées dans le bois gorgé d'eau, et sur des échantillons de bois modèles préparés pour simuler le bois archéologique gorgé d'eau. Les deux processus biologiques ont montré des résultats positifs en extrayant des espèces de fer et de soufre à partir d'échantillons de bois modèles. De plus, aucune dégradation supplémentaire du bois n'a été détectée après l'application des méthodes d'extraction. Néanmoins, des recherches supplémentaires sont nécessaires pour améliorer l'extraction du fer et du soufre car avec des phases minérales plus stables, les taux de dissolution étaient plus faibles. Combinées sur des échantillons de bois modèles, l'utilisation de sidérophores et l'oxydation biologique ont obtenu des résultats dans le cadre des traitements d'extraction chimiques actuels et respectent autant que possible les critères de conservation en termes d'aspect, d'efficacité et de sécurité. Les résultats du traitement biologique sont prometteurs et des efforts futurs seront faits pour améliorer les performances et développer un protocole prêt à l'emploi. ABSTRACT Waterlogged archaeological wood (WAW) is an essential part of our cultural heritage. Woodenobjects that have been preserved in waterlogged conditions provide valuable information about past civilizations. However, WAW may encounter serious issues after recovery. When sulfur and iron species have formed and accumulated during burial time, salts precipitation and acidification can appear after exposition to oxygen, leading to severe structural damages. Unfortunately, these alterations are often observed after objects have been consolidated. In response, chemical extraction or neutralization processes are applied. Currently, new trends are opting for less toxic and more environmentally friendly solutions. For example, bio-based treatments are arousing for the preservation of heritage artefacts based on the potential of diverse microbiological metabolisms. The aim of this thesis is to develop a green and sustainable method that would remove sulfur and iron compounds while maintaining the chemical stability and physical structure of WAW heritage. There are only few references of bio-based methods related to the conservation of organic substrates. Therefore, the biotechnological extraction proposed here is an innovative approach for the removal of iron/sulphur species from wood. This original method adopts two different strategies: 1) the removal of iron using microbial iron chelators (i.e., siderophores) and, 2) the extraction of sulfur species by oxidation with selected bacteria (i.e., Thiobacillus denitrificans). Both approaches were studied directly on mineral phases commonly found in WAW, and on model wood samples prepared to simulate WAW. Separately, both biological processes showed positive results extracting iron and sulfur species from model wood samples. Moreover, no further degradation of the wood matrix was detected after application of either extraction method. Further research is still needed to enhance the extraction of iron and sulfur as with more stable mineral phases the dissolution rates were lower. Combined together on model wood samples, the use of siderophores and biological oxidation performed in line to current chemical extraction methods and respected as much as possible the conservation guidelines in terms of appearance, effectiveness and safety. The bio-based treatment results are promising, and future efforts would be made to improve performance and to develop a ready-to use protocol.
Bacterial iron reduction and biogenic mineral formation for the stabilization of corroded iron objects
2018, Kooli, Wafa, Junier, Pilar, Joseph, Edith
En raison de la réactivité du fer à certains composés (oxygène, eau, chlore), ce métal pourrait être facilement corrodé et endommagé. De nombreux domaines tels que l'industrie alimentaire ou l'approvisionnement en eau rencontrent de graves problèmes dus à la corrosion du fer. La corrosion du fer engendre ainsi des pertes économiques importantes. Cela concerne aussi le patrimoine culturel où les objets en fer et surtout les objets archéologiques souffrent également de la corrosion et peuvent être détruits de façon irréversible. Afin de remédier à ces problèmes de corrosion, différentes méthodes conventionnelles de conservation-restauration existent. Cependant, ces techniques présentent certains inconvénients ou ne sont pas totalement efficaces en termes d’inhibition de la corrosion ou de déchloruration des objets. De nos jours, l'utilisation de la biotechnologie représente une approche prometteuse. En effet, il y a un intérêt croissant pour la synthèse de composés inorganiques par des systèmes biologiques dans des processus qui sont respectueux de l’environnement et des personnes. L'utilisation de micro-organismes ayant la capacité de transformer des produits de corrosion réactifs en composés chimiquement stables et insolubles avec un volume molaire inférieur représente une approche alternative aux méthodes traditionnelles utilisées dans le domaine de la conservation du fer. L'objectif global de cette étude est de contribuer au développement d'une approche biotechnologique pour la conservation-restauration des éléments en fer corrodés (monuments extérieurs et objets archéologiques). Pour cela, la réduction du fer par les bactéries a été choisie comme processus métabolique sous-jacent à la transformation des produits de corrosion réactifs (principalement akaganeite et lépidocrocite présents sur les objets en fer corrodés) en minéraux de Fe(II) (tels que magnétite et sidérite). L'hypothèse testée considère qu'en utilisant des bactéries réductrices du fer, des minéraux Fe(II) biogéniques seront formés permettant la conversion des produits de corrosion présents sur les objets, et qu’ainsi les objets en fer seront stabilisés et empêchés de corrosion ultérieure. Deux principales stratégies ont été étudiées au cours de ce projet. La première approche étant l'utilisation de Shewanella loihica comme modèle de bactérie réductrice du fer, notamment car elle est également connue pour être anaérobe facultative, halophile et a été utilisée pour la production de minéraux de Fe(II) dans d'autres études. Au cours de ce projet de doctorat, des résultats additionnels intéressants ont été obtenus : la réduction du fer avec S. loihica n'était possible qu'en présence de NaCl et des phosphates de Fe(II) inattendus se sont formés. La pertinence du processus de stabilisation proposé a donc été démontrée et complétée par l'étude du rôle du sel dans la réduction du fer et de l'accumulation de polyphosphates dans cet organisme. La deuxième approche consistait à isoler à partir d'échantillons environnementaux d’autres candidats bactériens réduisant le fer. L’échantillonnage a abouti à la sélection de deux de deux souches du genre Aeromonas. Les deux souches isolées ont été alors employées dans la démonstration expérimentale du processus de réduction du fer sur des objets archéologiques une avec ces deux bactéries sélectionnées permettant la mise en place d'un prototype de traitement applicable par les conservateurs-restaurateurs. ABSTRACT Due to the reactivity of iron to some compounds (oxygen, water, chlorine), this metal could be easily corroded and thus endangered. Many fields like food industry or water supply encounter severe problems due to iron corrosion that engenders important economic losses. In cultural heritage, iron artifacts and especially archaeological iron objects suffer from corrosion and could be irreversibly damaged. In order to remediate to these issues, different conventional conservation-restoration methods exist. However, these techniques present some caveats and/or are not completely efficient in terms of chlorine removal or corrosion inhibition. Nowadays, the use of biotechnology represents a promising approach. Indeed, there is a growing interest in the synthesis of inorganic components by biological systems in processes that are respectful of the environment. The use of microorganisms with the ability to transform reactive corrosion products into chemically stable and insoluble compounds with a lower molar volume represents an alternative approach to the traditional methods employed in the field of iron conservation. The overall aim of this study is to contribute to the development of a biotechnological approach for the conservation-restoration of corroded iron items (outdoor monuments and archaeological objects). For this purpose, iron reduction by bacteria was selected as an interesting metabolic process underlying the transformation of Fe(III) corrosion products (such as akageneite and lepidocrocite present in corroded iron objects) into Fe(II) minerals (such as magnetite and siderite). The hypothesis tested considers that using iron-reducing bacteria, biologically-induced Fe(II) minerals will be formed from the corrosion products present on the objects and thus these latter will be stabilized and protected further corrosion. Two main strategies were considered during this project. The first approach was the study of a known bacterium Shewanella loihica as a model iron reducer given that it is known to be a facultative anaerobe, halophilic and was used for the production of Fe(II) minerals in other studies. During this PhD project, interesting additional results were obtained: the iron reduction with S. loihica was solely possible in presence of NaCl and unexpected Fe(II) phosphate minerals were formed. The suitability of the proposed stabilization process was hence demonstrated and complemented with the investigation of the role of salt on iron reduction and of the accumulation of polyphosphates in this micro-organism. The second approach was the isolation of iron-reducing bacterial candidates from environmental samples. The screening resulted in the selection of two strains from the genus Aeromonas. Both isolated strains were employed in the experimental testing of the iron reduction process on archaeological objects allowing the setting-up of a prototype treatment that can be applied by conservator-restorers.