Voici les éléments 1 - 3 sur 3
Vignette d'image
Publication
Accès libre

The ecology underlying decision rules of bluestreak cleaner wrasse during client interactions

2017, McAfoose, Sharon, Bshary, Redouan

La coopération est définie comme un «comportement d'aide» qui offre des avantages directs à d'autres individus. Un tel comportement a longtemps intrigué les biologistes car il pose un problème pour la théorie évolutive classique : pourquoi un individu devrait-il effectuer un comportement qui bénéficie un autre individu plutôt que lui-même? En effet, un vaste ensemble de travaux sur la théorie des jeux évolutifs ainsi que des études empiriques ont depuis identifié de nombreux mécanismes qui expliquent le maintien d’une coopération stable entre des individus non apparentés. Cependant, le comportement humain ne correspond souvent pas aux stratégies optimales prédites par les modèles théoriques, d’où la nécessité de comprendre les processus de prises de décisions. Par exemple, l'utilisation de raccourcis de décision, correspondant à une heuristique connue (ou d'une règle empirique dans le cas des animaux non-humains), permet aux individus de prendre des décisions rapides et précises dans des situations auxquels ils sont fréquemment confrontés. Par contre, ces raccourcis peuvent conduire à des comportements sub-optimaux dans des contextes nouveaux. Les contraintes cognitives, telles que les capacités d'apprentissage ou l'incapacité à identifier les indices environnementaux ou sociaux pertinents, peuvent également entraîner des différences par rapport au comportement prédit.
En étudiant le labre nettoyeur (Labroides dimidiatus) comme modèle, cette thèse avait pour objectifs : 1) d'étudier les importantes disparités entre les données expérimentales et les prévisions théoriques standard concernant les décisions animales lors d’interactions coopératives; et 2) d’explorer la façon dont les nettoyeurs sont en mesure de facilement identifier et utiliser des repères pertinents pour la prise de décision. Les nettoyeurs participent à des interactions mutualistes avec des poissons de récifs coralliens appelés «clients» qui viennent les visiter dans leur territoire afin de se faire déparasiter. Cependant les nettoyeurs préfèrent se comporter en parasites et tricher en se nourrissant du mucus des clients qui est riche en azote plutôt que de leurs parasites. Par conséquent, pour encourager les nettoyeurs à être coopératifs, les clients utilisent divers mécanismes de contrôle tels que la punition et le changement de partenaire. Ce mutualisme entre nettoyeurs et clients a jusqu'ici fourni de solides preuves empiriques soutenant l’usage de la théorie des jeux évolutifs pour prédire le comportement coopératif.
Dans le chapitre 2, je démontre que les nettoyeurs qui proviennent de récifs caractérisés par une structure sociale complexe surpassent largement les nettoyeurs provenant de récifs caractérisés par une structure sociale simple lors d’expériences classiques de coopération et de cognition. Les récifs « simples » sont caractérisés par une abondance et une diversité de clients moindre ainsi qu'une plus faible densité de nettoyeurs par rapport aux récifs « complexes ». Mes expériences démontrent que les nettoyeurs provenant d’environnements simples ne réussissent généralement pas à: 1) se nourrir contre leur préférence, 2) adapter leur comportement coopératif en présence d'un observateur et 3) offrir systématiquement la priorité à une source de nourriture temporaire plutôt qu’à une source de nourriture permanente. Ces résultats contrastent fortement avec les données publiées sur des comportements de recherche de nourriture dans des expériences en laboratoire traditionnelles. Pour mieux comprendre ces disparités, j'ai étudié dans le chapitre 3 si les deux groupes de nettoyeurs utilisent des indices différents lors de la prise de décisions au moment où ils vont se nourrir, particulièrement en ce qui concerne la priorité offerte aux clients. Les nettoyeurs provenant d'environnements socialement complexes sont capables de trouver un repère précis lors de la prise de décision, conduisant à une plus grande précision dans les tâches en laboratoire. Par contre, les nettoyeurs provenant d'environnements socialement simples utilisent une règle de base qui conduit à une performance plus faible lors de la même tâche.
Dans le chapitre 4, j'ai déterminé que les règles appliquées par les deux groupes de nettoyeurs en milieu naturel semblent être adaptées à leur habitat respectifs et que les contraintes cognitives des nettoyeurs de l'environnement socialement simple étaient spécifiques au contexte dans lequel ils vivent et dues au fait que la santé des nettoyeurs et leur performance cognitive dans un tâche abstraite ne diffèrent pas entre les deux groupes. Finalement, dans le chapitre 5, j'ai étudié la façon dont les nettoyeurs sont en mesure d'extraire des indices pertinents pour les décisions impliquant la tricherie et la recherche de refuge. J'ai démontré que la capacité des nettoyeurs à généraliser la reconnaissance de différentes espèces de prédateurs dans un contexte d'outil social. Cependant, cette capacité disparait lorsque les nettoyeurs sont testés dans un contexte abstrait.
Les résultats de cette thèse ont des retombées importantes pour faire avancer notre compréhension de la cognition chez les animaux et de la théorie des jeux évolutifs. Les résultats sont discutés en soulignant l’importance de l'approche écologique de la cognition et en suggérant des possibilités d’amélioration des modèles théoriques sur la question., Cooperation is defined as a ‘helping’ behaviour that provides direct fitness benefits to other individuals. Such behaviours have long intrigued biologists, as it poses a problem for classic evolutionary theory, i.e. why should an individual perform a behaviour that is beneficial to other individuals? Indeed, an expansive body of work on evolutionary game theory, as well as, empirical studies, have provided many mechanisms for promoting stable cooperation between unrelated individuals. Humans, however, often deviate from the optimal strategies predicted by theoretical models, which has emphasized the need to understand decision making processes. For example, the use of decision short cuts, known heuristics (or rules of thumb in non-human animals), allows individuals to make decisions quickly and accurately in frequently occurring situations, but may lead to less than optimal behaviour in novel contexts. Additionally, cognitive constraints, such as learning capabilities or failure to identify relevant environmental or social cues, may also cause deviations from predicated behaviour.
Using bluestreak ‘cleaner’ wrasse (Labroides dimidiatus) as a model system, the primary aims of this PhD thesis were 1) to investigate important mismatches between standard theoretical predictions regarding animal decisions during cooperative interactions and experimental data, as well as, 2) to explore how well cleaners are able to readily identify and use relevant cues for decision making. Cleaners engage in mutualistic relationships with so-called reef fish ‘clients’, which visit cleaner territories for ectoparasite removal. Cleaners, however, prefer feeding on nitrogen-rich client mucus, which constitutes cheating. Hence, to help ensure a cooperative cleaner, clients employ various partner control mechanisms, including punishment and partner switching. This dynamic cleaning mutualism has hitherto provided strong empirical evidence in support of evolutionary game theory for predicting cooperative behaviour.
In Chapter 2, however, I demonstrate that cleaners from socially complex reef environments largely outperform cleaners from socially simple reefs in classic cooperation- and cognition-based experiments. A lower abundance and diversity of reef fish clients, as well as, a lower density of cleaners, characterize socially simple reefs. Cleaners from these simple environments generally failed to: 1) feed against their preference, 2) adjust their cooperative behaviour in the presence of an audience, and 3) consistently provide service priority to a temporary food source over a permanent food source. These findings strongly contrast published evidence on cleaner foraging behaviour in laboratory-based experiments. To further understand these inconsistencies, in Chapter 3, I investigated whether the two cleaner groups used different cues when making foraging decisions; specifically, in regards to client service priority. Cleaners from the socially complex reef environment were found to use a precise cue when making decisions, leading to higher accuracy in the laboratory, whereas cleaners from the socially simple reef environment used a correlated cue, or a rule of thumb, which lead to an overall poorer performance.
In Chapter 4, I determined that the rules applied by the two cleaner groups in nature appear to be locally adaptive and that the cognitive constraints displayed by cleaners from the socially simple reef environment were context specific, as both cleaner body condition and cognitive performance in an abstract task did not differ between reef environments. Finally, in Chapter 5, I investigated how well cleaners are able to extract relevant cues for decisions involving cheating and refuge-seeking. Here, I demonstrated the ability of cleaners to generalize predator species in a social tool context; yet this ability disappeared when cleaners were tested in an abstract context.
Collectively, these results have important implications for both cognition and evolutionary game theory. The results are discussed with an emphasis placed on the importance of the ecological approach to cognition, as well as, suggestions for future modifications to theoretical models.

Vignette d'image
Publication
Accès libre

Do cleaner fish learn to feed against their preference in a reverse reward contingency task?

2010, Danisman, Evin, Bshary, Redouan, Bergmueller, Ralph

The ability to control impulsive behaviour has been studied in animals with a standard test in which subjects need to choose the smaller of two food items in order to receive the larger one (reverse reward contingency). As a variety of mammals that have been tested so far (mostly primates) have great difficulties to solve the task, it has been proposed that it is generally cognitively demanding. However, according to an ecological approach to cognition, a species’ ability to solve the task should not depend on its general cognitive abilities but on whether its ecology causes selective pressure on the ability to restrain foraging behaviour. We tested this hypothesis using the cleaner wrasse (Labroides dimidiatus), a fish species that feeds against its preference in nature when engaging in cleaning interactions with so called ‘client fish’. None of the eight tested individuals learned to choose a non-preferred item after 200 trials. In a subsequent test, one subject learned to respond correctly in a large or none contingency task (only the choice of the small food was rewarded). After a short re-experience treatment, this individual learned to solve the reverse reward task after 30 trials. In conclusion, we did not find support for the general idea that interactions with clients prepared cleaners to quickly solve a reverse reward test. However, the results suggest that the potential to solve a reverse reward contingency may not be restricted to mammals but could be present also in a fish species in which the problem of choosing a non-preferred food over a preferred one is an ever present challenge in nature.

Vignette d'image
Publication
Accès libre

Cortisol mediates cleaner wrasse switch from cooperation to cheating and tactical deception

, Soares, Marta C, Cardoso, Sónia C, Grutter, Alexandra S, Oliveira, Rui F, Bshary, Redouan

Recent empirical research, mostly done on humans, recognizes that individuals' physiological state affects levels of cooperation. An individual's internal state may affect the payoffs of behavioural alternatives, which in turn could influence the decision to either cooperate or to defect. However, little is known about the physiology underlying condition dependent cooperation. Here, we demonstrate that shifts in cortisol levels affect levels of cooperation in wild cleaner wrasse Labroides dimidiatus. These cleaners cooperate by removing ectoparasites from visiting ‘client’ reef fishes but prefer to eat client mucus, which constitutes cheating. We exogenously administrated one of three different compounds to adults, that is, (a) cortisol, (b) glucocorticoid receptor antagonist mifepristone RU486 or (c) sham (saline), and observed their cleaning behaviour during the following 45 min. The effects of cortisol match an earlier observational study that first described the existence of “cheating” cleaners: such cleaners provide small clients with more tactile stimulation with their pectoral and pelvic fins, a behaviour that attracts larger clients that are then bitten to obtain mucus. Blocking glucocorticoid receptors led to more tactile stimulation to large clients. As energy demands and associated cortisol concentration level shifts affect cleaner wrasse behavioural patterns, cortisol potentially offers a general mechanism for condition dependent cooperation in vertebrates.