Options
Kessler, Félix
Résultat de la recherche
Essential role of the G-domain in targeting of the protein import receptor atToc159 to the chloroplast outer membrane
2002, Bauer, Jörg, Hiltbrunner, Andreas, Weibel, Petra, Vidi, Pierre-Alexandre, Alvarez-Huerta, Mayte, Smith, Matthew, Schnell, Danny, Kessler, Félix
Two homologous GTP-binding proteins, atToc33 and atToc159, control access of cytosolic precursor proteins to the chloroplast. atToc33 is a constitutive outer chloroplast membrane protein, whereas the precursor receptor atToc159 also exists in a soluble, cytosolic form. This suggests that atToc159 may be able to switch between a soluble and an integral membrane form. By transient expression of GFP fusion proteins, mutant analysis, and biochemical experimentation, we demonstrate that the GTP-binding domain regulates the targeting of cytosolic atToc159 to the chloroplast and mediates the switch between cytosolic and integral membrane forms. Mutant atToc159, unable to bind GTP, does not reinstate a green phenotype in an albino mutant (ppi2) lacking endogenous atToc159, remaining trapped in the cytosol. Thus, the function of atToc159 in chloroplast biogenesis is dependent on an intrinsic GTP-regulated switch that controls localization of the receptor to the chloroplast envelope.
Targeting of an abundant cytosolic form of the protein import receptor at Toc159 to the outer chloroplast membrane
2001, Hiltbrunner, Andreas, Bauer, Jörg, Vidi, Pierre-Alexandre, Infanger, Sibylle, Weibel, Petra, Hohwy, Morten, Kessler, Félix
Chloroplast biogenesis requires the large-scale import of cytosolically synthesized precursor proteins. A trimeric translocon (Toc complex) containing two homologous, GTP-binding proteins (atToc33 and atToc159) and a channel protein (atToc75) facilitates protein translocation across the outer envelope membrane. The mechanisms governing function and assembly of the Toc complex are not yet understood. This study demonstrates that atToc159 and its pea orthologue exist in an abundant, previously unrecognized soluble form, and partition between cytosol-containing soluble fractions and the chloroplast outer membrane. We show that soluble atToc159 binds directly to the cytosolic domain of atToc33 in a homotypic interaction, contributing to the integration of atToc159 into the chloroplast outer membrane. The data suggest that the function of the Toc complex involves switching of at Toc159 between a soluble and an integral membrane form.
AtToc90, a new GTP-binding component of the Arabidopsis chloroplast protein import machinery
2004, Hiltbrunner, Andreas, Grunig, Kathrin, Alvarez-Huerta, Mayte, Infanger, Sibylle, Bauer, Jörg, Kessler, Félix
AtToc159 is a GTP-binding chloroplast protein import receptor. In vivo, atToc159 is required for massive accumulation of photosynthetic proteins during chloroplast biogenesis. Yet, in mutants lacking atToc159 photosynthetic proteins still accumulate, but at strongly reduced levels whereas non-photosynthetic proteins are imported normally: This suggests a role for the homologues of atToc159 (atToc132, - 120 and - 90). Here, we show that atToc90 supports accumulation of photosynthetic proteins in plastids, but is not required for import of several constitutive proteins. Part of atToc90 associates with the chloroplast surface in vivo and with the Toc-complex core components (atToc75 and atToc33) in vitro suggesting a function in chloroplast protein import similar to that of atToc159. As both proteins specifically contribute to the accumulation of photosynthetic proteins in chloroplasts they may be components of the same import pathway.
Protein translocon at the Arabidopsis outer chloroplast membrane
2001, Hiltbrunner, Andreas, Bauer, Jörg, Alvarez-Huerta, Mayte, Kessler, Félix
Chloroplasts are organelles essential for the photoautotrophic growth of plants. Their biogenesis from undifferentiated proplastids is triggered by light and requires the import of hundreds of different precursor proteins from the cytoplasm. Cleavable N-terminal transit sequences target the precursors to the chloroplast where translocon complexes at the outer (Toc complex) and inner (Tic complex) envelope membranes enable their import. In pea, the Toc complex is trimeric consisting of two surface-exposed GTP-binding proteins (Toc159 and Toc34) involved in precursor recognition and Toc75 forming an aequeous protein-conducting channel. Completion of the Arabidopsis genome has revealed an unexpected complexity of predicted components of the Toc complex in this plant model organism: four genes encode homologs of Toc159, two encode homologs of Toc34, but only one encodes a likely functional homolog of Toc75. The availability of the genomic sequence data and powerful molecular genetic techniques in Arabidopsis set the stage to unravel the mechanisms of chloroplast protein import in unprecedented depth.
The major protein import receptor of plastids is essential for chloroplast biogenesis
2000, Bauer, Jörg, Chen, Kunhua, Hiltbunner, Andreas, Wehrli, Ernst, Eugster, Monika, Schnell, Danny, Kessler, Félix
Light triggers the developmental programme in plants that leads to the production of photosynthetically active chloroplasts from non-photosynthetic proplastids1. During this chloroplast biogenesis, the photosynthetic apparatus is rapidly assembled, mostly from nuclear-encoded imported proteins2, 3, 4, which are synthesized in the cytosol as precursors with cleavable amino-terminal targeting sequences called transit sequences. Protein translocon complexes at the outer (Toc complex)5, 6, 7 and inner (Tic complex)6, 8, 9 envelope membranes recognize these transit sequences, leading to the precursors being imported. The Toc complex in the pea consists of three major components, Toc75, Toc34 and Toc159 (formerly termed Toc86)6, 7, 10, 11. Toc159, which is an integral membrane GTPase12, functions as a transit-sequence receptor5, 6, 7, 13. Here we show that Arabidopsis thaliana Toc159 (atToc159) is essential for the biogenesis of chloroplasts. In an Arabidopsis mutant (ppi2) that lacks atToc159, photosynthetic proteins that are normally abundant are transcriptionally repressed, and are found in much smaller amounts in the plastids, although ppi2 does not affect either the expression or the import of less abundant non-photosynthetic plastid proteins. These findings indicate that atToc159 is required for the quantitative import of photosynthetic proteins. Two proteins that are related to atToc159 (atToc120 and atToc132) probably help to maintain basal protein import in ppi2, and so constitute components of alternative, atToc159-independent import pathways.
AtToc90, a New GTP-Binding Component of the Arabidopsis Chloroplast Protein Import Machinery
2004, Hiltbrunner, Andreas, Grünig, Kathrin, Alvarez-Huerta, Mayte, Infanger, Sibylle, Bauer, Jörg, Kessler, Félix
AtToc159 is a GTP-binding chloroplast protein import receptor. In vivo, atToc159 is required for massive accumulation of photosynthetic proteins during chloroplast biogenesis. Yet, in mutants lacking atToc159 photosynthetic proteins still accumulate, but at strongly reduced levels whereas non-photosynthetic proteins are imported normally: This suggests a role for the homologues of atToc159 (atToc132, -120 and -90). Here, we show that atToc90 supports accumulation of photosynthetic proteins in plastids, but is not required for import of several constitutive proteins. Part of atToc90 associates with the chloroplast surface in vivo and with the Toc-complex core components (atToc75 and atToc33) in vitro suggesting a function in chloroplast protein import similar to that of atToc159. As both proteins specifically contribute to the accumulation of photosynthetic proteins in chloroplasts they may be components of the same import pathway.
Molecular biology of chloroplast biogenesis: gene expression, protein import and intraorganellar sorting
2001, Bauer, Jörg, Hiltbrunner, Andreas, Kessler, Félix
The chloroplast is the hallmark organelle of plants. It performs photosynthesis and is therefore required for photoautotrophic plant growth. The chloroplast is the most prominent member of a family of related organelles termed plastids which are ubiquitous in plant cells. Biogenesis of the chloroplast from undifferentiated proplastids is induced by light. The generally accepted endosymbiont hypothesis states that chloroplasts have arisen from an internalized cyanobacterial ancestor. Although chloroplasts have maintained remnants of the ancestral genome (plastome), the vast majority of the genes encoding chloroplast proteins have been transferred to the nucleus. This poses two major challenges to the plant cell during chloroplast biogenesis: First, light and developmental signals must be interpreted to coordinately express genetic information contained in two distinct compartments. This is to ensure supply and stoichiometry of abundant chloroplast components. Second, developing chloroplasts must efficiently import nuclear encoded and cytosolically synthesized proteins. A subset of proteins, including such encoded by the plastome, must further be sorted to the thylakoid compartments for assembly into the photosynthetic apparatus.