Imaging Microwave and DC Magnetic Fields in a Vapor-Cell Rb Atomic Clock
Author(s)
Du, Guan-Xiang
Bandi, Thejesh
Horsley, Andrew
Treutlein, Philipp
Date issued
2015
In
IEEE Transactions on Instrumentation and Measurement, Institute of Electrical and Electronics Engineers
Vol
64
No
12
From page
3629
To page
3637
Subjects
Atomic clocks diode lasers microwave measurements microwave resonators microwave spectroscopy optical pumping
Abstract
We report on the experimental measurement of the dc and microwave magnetic field distributions inside a recently developed compact magnetron-type microwave cavity mounted inside the physics package of a high-performance vapor-cell atomic frequency standard. Images of the microwave field distribution with sub-100- μm lateral spatial resolution are obtained by pulsed optical-microwave Rabi measurements, using the Rb atoms inside the cell as field probes and detecting with a CCD camera. Asymmetries observed in the microwave field images can be attributed to the precise practical realization of the cavity and the Rb vapor cell. Similar spatially resolved images of the dc magnetic field distribution are obtained by Ramsey-type measurements. The <i>T<sub>2</sub></i> relaxation time in the Rb vapor cell is found to be position dependent and correlates with the gradient of the dc magnetic field. The presented method is highly useful for experimental <i>in situ</i> characterization of dc magnetic fields and resonant microwave structures, for atomic clocks or other atom-based sensors and instrumentation.
Publication type
journal article
File(s)![Thumbnail Image]()
Loading...
Name
Affolderbach_C.-Imaging_microwave-20151111.pdf
Type
Main Article
Size
4.5 MB
Format
Adobe PDF
Checksum
(MD5):10adfb7339db320a0f83dca0a5b79a10
