Blocking the evolution of insecticide-resistant malaria vectors with a microsporidian
Author(s)
Date issued
2012
In
Evolutionary Applications, Wiley
Vol
5
No
3
From page
283
To page
292
Subjects
disease biology evolutionary medicine evolution-proof control host parasite interactions
Abstract
Finding a way to block the evolution insecticide resistance would be a major breakthrough for the control of malaria. We suggest that this may be possible by introducing a stress into mosquito populations that restores the sensitivity of genetically resistant mosquitoes and that decreases their longevity when they are not exposed to insecticide. We use a mathematical model to show that, despite the intense selection pressure imposed by insecticides, moderate levels of stress might tip the evolutionary balance between costs and benefits of resistance toward maintaining sensitivity. Our experimental work with the microsporidian parasite <i>Vavraia culicis</i> infecting two lines of resistant mosquitoes and a sensitive line suggests that it may indeed be possible to stress the mosquitoes in the required way. The mortality of resistant mosquitoes 24 h after exposure to the insecticide was up to 8.8 times higher in infected than in uninfected ones; if mosquitoes were not exposed to the insecticide, resistant mosquitoes infected by the microsporidian lived about half as long as uninfected ones and insecticide-sensitive mosquitoes (with or without the parasite). Our results suggest that biopesticides or other insecticides that interfere with the expression of resistance may help to manage insecticide resistance in programs of malaria control.
Publication type
journal article
File(s)![Thumbnail Image]()
Loading...
Name
Koella_J.-Blocking_the_evolution_20170303135456-SM.pdf
Type
Main Article
Size
716.73 KB
Format
Adobe PDF
Checksum
(MD5):28db3e7686f91d1075bb43f5693fd972
