Repository logo
Research Data
Publications
Projects
Persons
Organizations
English
Français
Log In(current)
  1. Home
  2. Publications
  3. Article de recherche (journal article)
  4. Bayesian optimization in ab initio nuclear physics

Bayesian optimization in ab initio nuclear physics

Author(s)
A Ekström
C Forssén
Dimitrakakis, Christos  
Chaire de science des données  
D Dubhashi
H T Johansson
A S Muhammad
H Salomonsson
A Schliep
Date issued
2019
In
Journal of Physics G: Nuclear and Particle Physics
Vol
46
Abstract
Theoretical models of the strong nuclear interaction contain unknown coupling constants (parameters) that must be determined using a pool of calibration data. In cases where the models are complex, leading to time consuming calculations, it is particularly challenging to systematically search the corresponding parameter domain for the best fit to the data. In this paper, we explore the prospect of applying Bayesian optimization to constrain the coupling constants in chiral effective field theory descriptions of the nuclear interaction. We find that Bayesian optimization performs rather well with low-dimensional parameter domains and foresee that it can be particularly useful for optimization of a smaller set of coupling constants. A specific example could be the determination of leading three-nucleon forces using data from finite nuclei or three-nucleon scattering experiments.
Publication type
journal article
Identifiers
https://libra.unine.ch/handle/20.500.14713/64456
DOI
10.1088/1361-6471/ab2b14
File(s)
Loading...
Thumbnail Image
Download
Name

pdf.pdf

Type

Main Article

Size

2.26 MB

Format

Adobe PDF

Université de Neuchâtel logo

Service information scientifique & bibliothèques

Rue Emile-Argand 11

2000 Neuchâtel

contact.libra@unine.ch

Service informatique et télématique

Rue Emile-Argand 11

Bâtiment B, rez-de-chaussée

Powered by DSpace-CRIS

libra v2.1.0

© 2025 Université de Neuchâtel

Portal overviewUser guideOpen Access strategyOpen Access directive Research at UniNE Open Access ORCIDWhat's new