Repository logo
Research Data
Publications
Projects
Persons
Organizations
English
Français
Log In(current)
  1. Home
  2. Publications
  3. Article de recherche (journal article)
  4. Online adaptive policies for ensemble classifiers

Online adaptive policies for ensemble classifiers

Author(s)
Dimitrakakis, Christos  
Chaire de science des données  
Samy Bengio
Date issued
2005
In
Neurocomputing
Vol
64
From page
211
To page
221
Subjects
Neural networks Supervised learning Reinforcement learning Ensembles Mixture of experts Boosting Q-learning
Abstract
Ensemble algorithms can improve the performance of a given learning algorithm through the combination of multiple base classifiers into an ensemble. In this paper, we attempt to train and combine the base classifiers using an adaptive policy. This policy is learnt through a Q-learning inspired technique. Its effectiveness for an essentially supervised task is demonstrated by experimental results on several UCI benchmark databases.
Publication type
journal article
Identifiers
https://libra.unine.ch/handle/20.500.14713/64431
DOI
10.1016/j.neucom.2004.11.031
File(s)
Loading...
Thumbnail Image
Download
Name

1-s2.0-S0925231204005144-main.pdf

Type

Main Article

Size

244.62 KB

Format

Adobe PDF

Université de Neuchâtel logo

Service information scientifique & bibliothèques

Rue Emile-Argand 11

2000 Neuchâtel

contact.libra@unine.ch

Service informatique et télématique

Rue Emile-Argand 11

Bâtiment B, rez-de-chaussée

Powered by DSpace-CRIS

libra v2.1.0

© 2025 Université de Neuchâtel

Portal overviewUser guideOpen Access strategyOpen Access directive Research at UniNE Open Access ORCIDWhat's new