Repository logo
Research Data
Publications
Projects
Persons
Organizations
English
Français
Log In(current)
  1. Home
  2. Publications
  3. Article de recherche (journal article)
  4. nse: Computation of numerical standard errors in R

nse: Computation of numerical standard errors in R

Author(s)
Ardia, David  
Chaire de gestion des risques financiers  
Bluteau, Keven  
Chaire de gestion des risques financiers  
Date issued
February 2017
In
Journal of Open Source Software
Vol
2
No
10
From page
1
To page
1
Reviewed by peer
1
Subjects
Bootstrap GARCH HAC kernel numerical standard error (NSE) spectral density
Abstract
nse is an R package (R Core Team (2016)) for computing the numerical standard error (NSE), an estimate of the standard deviation of a simulation result if the simulation experiment were to be repeated many times. The package provides a set of wrappers around several R packages, which give access to more than thirty estimators, including batch means estimators (Geyer (1992 Section 3.2)), initial sequence estimators (Geyer (1992 Equation 3.3)), spectrum at zero estimators (Heidelberger and Welch (1981),Flegal and Jones (2010)), heteroskedasticity and autocorrelation consistent (HAC) kernel estimators (Newey and West (1987),Andrews (1991),Andrews and Monahan (1992),Newey and West (1994),Hirukawa (2010)), and bootstrap estimators Politis and Romano (1992),Politis and Romano (1994),Politis and White (2004)).
Publication type
journal article
Identifiers
https://libra.unine.ch/handle/20.500.14713/64081
DOI
10.21105/joss.00172
File(s)
Loading...
Thumbnail Image
Download
Name

joss.00172.pdf

Type

Main Article

Size

119.32 KB

Format

Adobe PDF

Université de Neuchâtel logo

Service information scientifique & bibliothèques

Rue Emile-Argand 11

2000 Neuchâtel

contact.libra@unine.ch

Service informatique et télématique

Rue Emile-Argand 11

Bâtiment B, rez-de-chaussée

Powered by DSpace-CRIS

libra v2.1.0

© 2026 Université de Neuchâtel

Portal overviewUser guideOpen Access strategyOpen Access directive Research at UniNE Open Access ORCIDWhat's new