Repository logo
Research Data
Publications
Projects
Persons
Organizations
English
Français
Log In(current)
  1. Home
  2. Publications
  3. Article de recherche (journal article)
  4. Spectrum of the Laplacian with weights

Spectrum of the Laplacian with weights

Author(s)
Colbois, Bruno  
Chaire de géométrie  
El Soufi, Ahmad
Date issued
March 4, 2019
In
Annals of Global Analysis and Geometry
Vol
2
No
55
From page
149
To page
180
Reviewed by peer
1
Subjects
eigenvalue Laplacian density Cheeger inequality upper bounds
Abstract
Given a compact Riemannian manifold $(M,g)$ and two positive functions $\rho$ and $\sigma$, we are interested in the eigenvalues of the Dirichlet energy functional weighted by $\sigma$, with respect to the $L^2$ inner product weighted by $\rho$. Under some regularity conditions on $\rho$ and $\sigma$, these eigenvalues are those of the operator
$-\rho^{-1} \mbox{div}(\sigma \nabla u)$
with Neumann conditions on the boundary if $\partial M\ne \emptyset$.
We investigate the effect of the weights on eigenvalues and
discuss the existence of lower and upper bounds under the condition that the total mass is preserved.
Project(s)
Geometric Spectral Theory  
Publication type
journal article
Identifiers
https://libra.unine.ch/handle/20.500.14713/62930
DOI
10.1007/s10455-018-9621-5
File(s)
Loading...
Thumbnail Image
Download
Name

2020-05-23_777_9564.pdf

Type

Main Article

Size

375.46 KB

Format

Adobe PDF

Université de Neuchâtel logo

Service information scientifique & bibliothèques

Rue Emile-Argand 11

2000 Neuchâtel

contact.libra@unine.ch

Service informatique et télématique

Rue Emile-Argand 11

Bâtiment B, rez-de-chaussée

Powered by DSpace-CRIS

libra v2.1.0

© 2026 Université de Neuchâtel

Portal overviewUser guideOpen Access strategyOpen Access directive Research at UniNE Open Access ORCIDWhat's new