Repository logo
Research Data
Publications
Projects
Persons
Organizations
English
Français
Log In(current)
  1. Home
  2. Publications
  3. Article de recherche (journal article)
  4. Lower bounds for the first eigenvalue of the magnetic Laplacian

Lower bounds for the first eigenvalue of the magnetic Laplacian

Author(s)
Colbois, Bruno  
Chaire de géométrie  
Savo, Alessandro
Date issued
May 17, 2018
In
Journal of Functional Analysis
Vol
10
No
274
From page
2818
To page
2845
Abstract
We consider a Riemannian cylinder $\Omega$ endowed with a closed potential $1$-form $A$ and study the magnetic Laplacian $\Delta_A$ with magnetic Neumann boundary conditions associated with those data. We establish a sharp lower bound for the first eigenvalue and show that the equality characterizes the situation where the metric is a product. We then look at the case of a planar domain bounded by two closed curves and obtain an explicit lower bound in terms of the geometry of the domain. We finally discuss sharpness of this last estimate.
Project(s)
Geometric Spectral Theory  
Publication type
journal article
Identifiers
https://libra.unine.ch/handle/20.500.14713/62852
DOI
10.1016/j.jfa.2018.02.012
File(s)
Loading...
Thumbnail Image
Download
Name

2020-05-23_777_2541.pdf

Type

Main Article

Size

500.54 KB

Format

Adobe PDF

Université de Neuchâtel logo

Service information scientifique & bibliothèques

Rue Emile-Argand 11

2000 Neuchâtel

contact.libra@unine.ch

Service informatique et télématique

Rue Emile-Argand 11

Bâtiment B, rez-de-chaussée

Powered by DSpace-CRIS

libra v2.1.0

© 2025 Université de Neuchâtel

Portal overviewUser guideOpen Access strategyOpen Access directive Research at UniNE Open Access ORCIDWhat's new