Repository logo
Research Data
Publications
Projects
Persons
Organizations
English
Français
Log In(current)
  1. Home
  2. Publications
  3. Article de recherche (journal article)
  4. Carbon cycle perturbation and stabilization in the wake of the Triassic-Jurassic boundary mass-extinction event

Carbon cycle perturbation and stabilization in the wake of the Triassic-Jurassic boundary mass-extinction event

Author(s)
van de Schootbrugge, B.
Payne, J. L.
Tomasovych, A.
Pross, J.
Fiebig, J.
Benbrahim, M.
Föllmi, Karl B.  
Centre d'hydrogéologie et de géothermie  
Quan, T. M.
Date issued
2008
In
Geochemistry Geophysics Geosystems (G3), American Geophysical Union (AGU), 2008/9/4/1-16
Abstract
The Triassic-Jurassic boundary mass-extinction event (T-J; 199.6 Ma) is associated with major perturbations in the carbon cycle recorded in stable carbon isotopes. Two rapid negative isotope excursions in bulk organic carbon (δ 13C<sub>org</sub>) occur within the immediate boundary interval at multiple locations and have been linked to the outgassing of <sup>12</sup>C-enriched CO<sub>2</sub> from the Central Atlantic Magmatic Province. In British Columbia, a positive δ <sup>13</sup>C<sub>org</sub> excursion of +5‰ (Vienna Peedee belemnite (V-PDB)) spans part or all of the subsequent Hettangian stage. Here, we examine the significance of these carbon isotope excursions as records of global carbon cycle dynamics across the T-J boundary and test the link between carbon cycle perturbation-stabilization and biotic extinction-recovery patterns. A combination of δ <sup>13</sup>C<sub>org</sub> and palynological analyses from the Late Triassic to Early Jurassic in the Mingolsheim core (Germany) suggests that organic carbon isotope variations are best explained as the result of both compositional changes in terrestrial versus marine input and disturbance and recovery patterns of major terrestrial plant groups across the T-J boundary. A new high-resolution δ <sup>13</sup>C<sub>carb</sub> record from the Val Adrara section in the Southern Alps (Italy) spanning from the uppermost Rhaetian through Lower Sinemurian does not exhibit a negative excursion at the T-J boundary but does record a large positive δ <sup>13</sup>C<sub>carb</sub> excursion of +4‰ (V-PDB) in bulk carbonate that begins at the T-J boundary and reaches a local maximum at the Early Late Hettangian boundary. Values then gradually decrease reaching +0.5‰ at the Hettangian-Sinemurian boundary and remain relatively constant into the Early Sinemurian. Complementary δ <sup>13</sup>C<sub>carb</sub> data from 4 more sections that span the Hettangian-Sinemurian boundary support carbon cycle stabilization within the Upper Hettangian. Our analyses suggest that isotope changes in organic carbon reservoirs do not necessarily require a shift in the global exogenic carbon reservoir and that the positive excursion in the carbonate carbon isotope record is best explained as the combined result of an increase in atmospheric <i>p</i>CO<sub>2</sub> leading to accelerated carbon cycling, decreased skeletal carbonate production, and increased organic carbon burial lasting several hundred thousand years. The termination of the positive inorganic carbon isotope excursion coincides with the recovery of marine skeletal carbonate producers and coeval changes in terrestrial vegetation and reflects the gradual reduction in <i>p</i>CO<sub>2</sub> and the stabilization of the global carbon cycle during the Sinemurian.
Publication type
journal article
Identifiers
https://libra.unine.ch/handle/20.500.14713/62547
DOI
10.1029/2007GC001914
File(s)
Loading...
Thumbnail Image
Download
Name

Van_de_Schootbrugge_B._-_Carbon_cycle_perturbation_and_stabilization_20080422.pdf

Type

Main Article

Size

913.28 KB

Format

Adobe PDF

Université de Neuchâtel logo

Service information scientifique & bibliothèques

Rue Emile-Argand 11

2000 Neuchâtel

contact.libra@unine.ch

Service informatique et télématique

Rue Emile-Argand 11

Bâtiment B, rez-de-chaussée

Powered by DSpace-CRIS

libra v2.1.0

© 2025 Université de Neuchâtel

Portal overviewUser guideOpen Access strategyOpen Access directive Research at UniNE Open Access ORCIDWhat's new