Repository logo
Research Data
Publications
Projects
Persons
Organizations
English
Français
Log In(current)
  1. Home
  2. Publications
  3. Article de recherche (journal article)
  4. A Galileo E1b,c RF Front-end Optimized for Narrowband Interferers Mitigation

A Galileo E1b,c RF Front-end Optimized for Narrowband Interferers Mitigation

Author(s)
Chastellain Frédéric
Botteron, Cyril
Wälchli, Gregoire
Zamuner, Giuseppe
Manetti, Davide
Farine, Pierre-André
Brault, Patrice
Date issued
2006
In
GNSS 19th International Technical Meeting of the Satellite Division, Institute of Navigation (ION), 2006/19//1069-1075
Abstract
The current Search and Rescue (SAR) service, which is based on the Cospas-Sarsat system, suffers from major limitations such as poor position accuracy, long alert times and high false alarm rate. Two types of distress signals are used, the first 121.5MHz/(up to 100mW) and the second 406MHz/5W, the latter being able to carry digitally encoded identification and position data. The Galileo system will importantly contribute to the improvement of the SAR system. Indeed, the Galileo satellites will include a transponder in order to re-broadcast the 406MHz message, which will allow a better coverage (27 Galileo satellites plus the current seven Cospas-Sarsat satellites) and also a shorter alert time. They will also include a return link message (RLM) in the Galileo E1b open service signal, which will reduce the number of false alarms. The Galileo system is therefore a great opportunity for the development of a new generation of beacons which will include a Galileo receiver and therefore be able to take advantage of the better coverage provided by the Galileo constellation to provide shorter alert times and of the RLM to reduce the number of false alarms. One of the major issue when designing a Galileo receiver to be operated in a distess beacon is to design a front-end that is sensitive enough to pick the very weak Galileo signals and on the same time rejects the strong distress messages. Indeed, when the beacon is turned on, the Galileo receiver is in cold start conditions and a short amount of time is left to the receiver to get a first fix before any distress message is actually emitted. However, in some cases, the receiver is not able to determine its position sufficiently fast and the front-end therefore has to acquire the satellites in the presence of the distress signals. This paper presents a Galileo radio frequency front-end designed in order to operate in the presence of such signals.
Publication type
journal article
Identifiers
https://libra.unine.ch/handle/20.500.14713/61910
File(s)
Loading...
Thumbnail Image
Download
Name

Chastellain_Fr_d_ric_-_A_Galileo_E1b_c_RF_Front-End_Optimized_20070201.pdf

Type

Main Article

Size

708.42 KB

Format

Adobe PDF

Université de Neuchâtel logo

Service information scientifique & bibliothèques

Rue Emile-Argand 11

2000 Neuchâtel

contact.libra@unine.ch

Service informatique et télématique

Rue Emile-Argand 11

Bâtiment B, rez-de-chaussée

Powered by DSpace-CRIS

libra v2.1.0

© 2025 Université de Neuchâtel

Portal overviewUser guideOpen Access strategyOpen Access directive Research at UniNE Open Access ORCIDWhat's new