Repository logo
Research Data
Publications
Projects
Persons
Organizations
English
Français
Log In(current)
  1. Home
  2. Publications
  3. Article de recherche (journal article)
  4. Sources of Surface Water in Space and Time: Identification of Delivery Processes and Geographical Sources With Hydraulic Mixing-Cell Modeling

Sources of Surface Water in Space and Time: Identification of Delivery Processes and Geographical Sources With Hydraulic Mixing-Cell Modeling

Author(s)
Glaser, Barbara
Hopp, Luisa
Partington, Daniel
Brunner, Philip  
Décanat de la faculté des sciences  
Therrien, René
Klaus, Julian
Date issued
October 2021
In
Water Resources Research
No
57
From page
1
To page
24
Abstract
Knowledge of the sources of surface water in riparian zones and floodplains is critical to understanding its role in runoff generation and impact on biogeochemical and ecological processes. In this study, we demonstrate the potential of integrated surface-subsurface hydrologic modeling (HydroGeoSphere) in combination with a hydraulic mixing-cell approach to decipher different sources of surface water and their mixing in space and time. We present a novel approach to processing the model data that allowed us to compare which mechanisms ultimately transferred water to the surface (delivery processes) and from where the surface water originated (geographical sources) for varying wetness states and phases of wetting or drying across 36 test locations within the riparian-stream continuum of an intensively-studied, humid-temperate, forested headwater catchment (45 ha). Consistent with current process understanding for the study site, water exfiltrating from the subsurface was simulated as the dominant source for riparian surface water and intermittent streamflow. The model further helped to specify the relevance of different subsurface stores, revealing a wetness-dependent activation of upslope source areas. Contributions of riparian overland flow and precipitation were minor during all investigated phases of wetting and drying. Moreover, the spatial variability of surface water sources proved to be smaller than expected for the heterogeneous patterns and frequencies of the surface saturation observed and simulated. Based on these findings, we discuss the value of hydraulic mixing-cell modeling to complement the planning and interpretation of field investigations and to enhance process understanding regarding the spatio-temporal sources of surface water.
Publication type
journal article
Identifiers
https://libra.unine.ch/handle/20.500.14713/58172
DOI
10.1029/2021WR030332
File(s)
Loading...
Thumbnail Image
Download
Name

2021-12-23_110_8010.pdf

Type

Main Article

Size

6.48 MB

Format

Adobe PDF

Université de Neuchâtel logo

Service information scientifique & bibliothèques

Rue Emile-Argand 11

2000 Neuchâtel

contact.libra@unine.ch

Service informatique et télématique

Rue Emile-Argand 11

Bâtiment B, rez-de-chaussée

Powered by DSpace-CRIS

libra v2.1.0

© 2025 Université de Neuchâtel

Portal overviewUser guideOpen Access strategyOpen Access directive Research at UniNE Open Access ORCIDWhat's new