Une inégalité du type Payne-Polya-Weinberger pour le laplacien brut
Author(s)
Date issued
2003
In
Proceedings of the American Mathematical Society
Vol
12
No
131
From page
3937
To page
3944
Subjects
rough Laplacian spectrum Riemannian bundle
Abstract
Let us consider a riemannian vector bundle E with compact basis (M, g) and the rough laplacian (&UDelta;) over bar associated to a connection D on E. We prove that the eigenvalues of (&UDelta;) over bar are bounded above by a function of the first eigenvalue and of the geometry of (M, g), but independently of the choice of the connection D.
Publication type
journal article
