Repository logo
Research Data
Publications
Projects
Persons
Organizations
English
Français
Log In(current)
  1. Home
  2. Publications
  3. Thèse de doctorat (doctoral thesis)
  4. Functional study of vacular sorting receptors in transgenic "Arabidopsis thaliana" plants

Functional study of vacular sorting receptors in transgenic "Arabidopsis thaliana" plants

Author(s)
Okmeni Nguemelieu, Jeannine
Editor(s)
Neuhaus, Jean-Marc  
Laboratoire de biologie moléculaire et cellulaire  
Date issued
2006
Subjects
récepteurs d’adressage vacuolaire GFP extinction RMR vacuoles Vacuolar Sorting receptors GFP silencing RMR vacuoles
Abstract
Fusion of the Green Fluorescence protein (GFP) to propeptides of different vacuolar proteins like barley aleurain and tobacco chitinase allowed to visualize two different vacuolar compartments with different sizes in different tissues. These propeptides contain vacuolar sorting determinant (VSD) of two different types: sequence-specific (aleurain) and C-terminal (chitinase). These VSDs are supposed to be recognized by receptors such as VSRs and RMRs. VSRs are supposed to mediate protein sorting to lytic vacuoles, while RMRs are supposed to mediate protein sorting to storage vacuoles. Partial cDNA sequences for these vacuolar sorting receptors were cloned into a geminivirus silencing vector, and introduced by biolistics into transgenic Arabidopsis plants expressing either Aleu-GFP or GFP-chi to visualize effects of gene silencing. The inactivation of the subfamily AtVSR3 in Aleu-GFP transgenic plants caused the absence of the GFP in the large central vacuole in epidermal cells (which are lytic vacuoles) of rosette leaves, while GFP appeared in small compartments which can be ER or Prevacuolar compartments (PVC). Silencing of subfamilies AtVSR 1and 2 did not affect strongly GFP distribution in cells. Seeds from these plants were not able to germinate, and scanning electron micrographs showed that seed coat cells were no more hexagonal and miss their columella compared to Wild type seeds. Unexpectedly, silencing of RMRs in Aleu-GFP plants lead to the secretion of GFP from mesophyll cells. In GFP-chi plants, RMRs silencing also lead to the secretion of the GFP into the extracellular space in mesophyll cells .In these plants, silencing of the VSR subfamilies did not affect the GFP fluorescent in epidermal cell vacuoles. Therefore we confirmed that VSRs and specially the subfamily 3 is the best candidate for sorting of proteins with sequence- specific VSDs in leaves while RMRs seem to be involved in the sorting in both pathways. Also interesting is the used of reverse genetic to study RMRs. This technic was used because of symptoms obtained with germinivirus. Using in situ hybridization, I have detected VSRs receptors in leaves and in roots of Arabiopsis thaliana plants. These results showed that AtVSR 1 and 5 mRNA were the most transcribed in leaves and in root. Finally, it seems that direct interaction between VSRs and RMRs is necessary to sort proteins to lytic vacuoles.
Notes
Thèse de doctorat : Université de Neuchâtel, 2006 ; Th. 1963
Publication type
doctoral thesis
Identifiers
https://libra.unine.ch/handle/20.500.14713/30672
DOI
10.35662/unine-thesis-1963
File(s)
Loading...
Thumbnail Image
Download
Name

these_OkmeniJ.pdf

Type

Main Article

Size

2.95 MB

Format

Adobe PDF

Université de Neuchâtel logo

Service information scientifique & bibliothèques

Rue Emile-Argand 11

2000 Neuchâtel

contact.libra@unine.ch

Service informatique et télématique

Rue Emile-Argand 11

Bâtiment B, rez-de-chaussée

Powered by DSpace-CRIS

libra v2.1.0

© 2025 Université de Neuchâtel

Portal overviewUser guideOpen Access strategyOpen Access directive Research at UniNE Open Access ORCIDWhat's new