Repository logo
Research Data
Publications
Projects
Persons
Organizations
English
Français
Log In(current)
  1. Home
  2. Publications
  3. Contribution à un congrès (conference paper)
  4. Epistemic Risk-Sensitive Reinforcement Learning

Epistemic Risk-Sensitive Reinforcement Learning

Author(s)
Hannes Eriksson
Dimitrakakis, Christos  
Chaire de science des données  
Date issued
June 14, 2019
Number of pages
8 pages, 2 figures
Subjects
cs.LG cs.AI stat.ML
Abstract
We develop a framework for interacting with uncertain environments in reinforcement learning (RL) by leveraging preferences in the form of utility functions. We claim that there is value in considering different risk measures
during learning. In this framework, the preference for risk can be tuned by variation of the parameter $\beta$ and the resulting behavior can be risk-averse, risk-neutral or risk-taking depending on the parameter choice. We
evaluate our framework for learning problems with model uncertainty. We measure and control for \emph{epistemic} risk using dynamic programming (DP) and policy gradient-based algorithms. The risk-averse behavior is then compared with the behavior of the optimal risk-neutral policy in environments with epistemic risk.
Publication type
conference paper
Identifiers
https://libra.unine.ch/handle/20.500.14713/21770
DOI
10.48550/arXiv.1906.06273
-
1906.06273v1
File(s)
Loading...
Thumbnail Image
Download
Name

ES2020-84.pdf

Type

Main Article

Size

1.72 MB

Format

Adobe PDF

Université de Neuchâtel logo

Service information scientifique & bibliothèques

Rue Emile-Argand 11

2000 Neuchâtel

contact.libra@unine.ch

Service informatique et télématique

Rue Emile-Argand 11

Bâtiment B, rez-de-chaussée

Powered by DSpace-CRIS

libra v2.1.0

© 2026 Université de Neuchâtel

Portal overviewUser guideOpen Access strategyOpen Access directive Research at UniNE Open Access ORCIDWhat's new