Repository logo
Research Data
Publications
Projects
Persons
Organizations
English
Français
Log In(current)
  1. Home
  2. Publications
  3. Contribution à un congrès (conference paper)
  4. Sustainable irrigation in the Yanqi Basin, China

Sustainable irrigation in the Yanqi Basin, China

Author(s)
Brunner, Philip  
Décanat de la faculté des sciences  
Kinzelbach, Wolfgang
Li, W P.
Dong, Xinguang
Editor(s)
Lorenzini, G
Brebbia, C A
Publisher
: Wessex Institute of Technology, UK
Date issued
September 2006
From page
315
To page
326
Abstract
The Yanqi basin, located in Xinjiang Province, China is a typical example of an area suffering from soil salinization induced by irrigation. The application of stream water without adequate drainage has raised the groundwater table in recent years, causing significantly increased groundwater evaporation (phreatic evaporation) and triggering soil salinization. The Yanqi basin has abundant groundwater resources recharged by the rivers outside the irrigated area. Groundwater from the second aquifer layer could be used for irrigation purposes as the water quality is high. If a part of the irrigation water directly drawn from the rivers is substituted by river water pumped indirectly from the aquifer, the groundwater table will drop and the process of salinization will be slowed down. However, abstraction from the second layer does include a risk. If the groundwater table in the first layer is lowered due to the abstraction of water in the second layer, water infiltrating from the (saline) first layer to the second layer continuously imports salt into the second aquifer layer. A coupled model of ground and surface water flow was set up to determine the resulting salt concentration of the aquifer system as well as of the irrigation water. Moreover, the ideal amount of groundwater applied to irrigation was determined by using the model. The model was constructed and verified by using spatially distributed input data derived from remote sensing. The simulations revealed that around 50% of the phreatic evaporation is related to irrigation. Moreover, the simulations showed that for every m3 of groundwater pumped, phreatic evaporation is lowered by 0.75 m3, and that the salinized area is reduced by 50 km2. Besides showing the changes in the overall water balance, the simulations proved that the steady state salt concentration in the aquifer system and in the irrigation water remains low, even if groundwater from the second layer is abstracted.
Notes
, 2015
Event name
Sustainable Irrigation
Location
Bologna, Italy
Publication type
conference paper
Identifiers
https://libra.unine.ch/handle/20.500.14713/21346
File(s)
Loading...
Thumbnail Image
Download
Name

2021-05-28_2607_4547.pdf

Type

Main Article

Size

1.73 MB

Format

Adobe PDF

Université de Neuchâtel logo

Service information scientifique & bibliothèques

Rue Emile-Argand 11

2000 Neuchâtel

contact.libra@unine.ch

Service informatique et télématique

Rue Emile-Argand 11

Bâtiment B, rez-de-chaussée

Powered by DSpace-CRIS

libra v2.1.0

© 2026 Université de Neuchâtel

Portal overviewUser guideOpen Access strategyOpen Access directive Research at UniNE Open Access ORCIDWhat's new