Repository logo
Research Data
Publications
Projects
Persons
Organizations
English
Français
Log In(current)
  1. Home
  2. Publications
  3. Contribution à un congrès (conference paper)
  4. An application of Ramanujan graphs to C*-algebra tensor products

An application of Ramanujan graphs to C*-algebra tensor products

Author(s)
Valette, Alain  
Chaire de géométrie algébrique  
Publisher
: Elsevier Science Bv
Date issued
1995
From page
597
To page
603
Abstract
In a remarkable recent paper, Junge and Pisier (1995) prove that there are several distinct C*-norms on the tensor product B(H) x B(H), where B(H) is the C*-algebra of bounded linear operators on the usual Hilbert space H. To give a quantitative version of this result, they introduce the function lambda(n) = sup{\\u\\(max)/\\u\\(min): u a tensor with rank at most n in B(H) x B(H)}, and prove cn(1/8) less than or equal to lambda(n) less than or equal to n(1/2) for n > 2. In this note, we use Ramanujan graphs to get 1/2n(1/2) < lambda(n) for any n = q + 1, q a prime power. From this we deduce lim inf/pi-->infinity lambda(n)/root n greater than or equal to 1/2 root 3.
Event name
15th British Combinatorial Conference
Location
Stirling, Scotland
Publication type
conference paper
Identifiers
https://libra.unine.ch/handle/20.500.14713/20413
-
https://libra.unine.ch/handle/123456789/13850
Université de Neuchâtel logo

Service information scientifique & bibliothèques

Rue Emile-Argand 11

2000 Neuchâtel

contact.libra@unine.ch

Service informatique et télématique

Rue Emile-Argand 11

Bâtiment B, rez-de-chaussée

Powered by DSpace-CRIS

v2.0.0

© 2025 Université de Neuchâtel

Portal overviewUser guideOpen Access strategyOpen Access directive Research at UniNE Open Access ORCIDWhat's new