Repository logo
Research Data
Publications
Projects
Persons
Organizations
English
Français
Log In(current)
  1. Home
  2. Publications
  3. Article de recherche (journal article)
  4. Performance of an Integrated Microoptical System for Fluorescence Detection in Microfluidic Systems

Performance of an Integrated Microoptical System for Fluorescence Detection in Microfluidic Systems

Author(s)
Roulet , Jean-Christophe
Völkel, Reinhard
Herzig, Hans-Peter  
Labo d'optique appliquée  
Verpoorte, Elisabeth
de Rooij, Nicolaas F.
Dändliker, René  
Labo d'optique appliquée  
Date issued
2002
In
Analytical Chemistry, American Chemical Society (ACS), 2020/74/14/3400-3407
Abstract
This article presents a new integrated microfluidic/microoptic device designed for basic biochemical analysis. The microfluidic network is wet-etched in a Borofloat 33 (Pyrex) glass wafer and sealed by means of a second wafer. Unlike other similar microfluidic systems, elements of the detection system are realized with the help of microfabrication techniques and directly deposited on both sides of the microchemical chip. The detection system is composed of the combination of refractive circular or elliptical microlens arrays and chromium aperture arrays. The microfluidic channels are 60 μm wide and 25 μm deep. The elliptical microlenses have a major axis of 400 μm and a minor axis of 350 μm. The circular microlens diameters range from 280 μm to 350 μm. The apertures deposited on the outer chip surfaces are etched in a 3000-Å-thick chromium layer. The overall thickness of this microchemical system is <1.6 mm. A limit of detection of 3.3 nM for a Cy5 solution in phosphate buffer (pH 7.4) was demonstrated. The cross-talk signal measured between two adjacent microchannels with 1 mm pitch was <1:5600, meaning that ≤1.8 × 10<sup>-4</sup>% of the fluorescence light power emitted from one microchannel filled with a 50 μM Cy5 solution reaches the photodetector at the adjacent microchannel. This performance compares very well with that obtainable in microchemical chips using confocal fluorescence systems, taking differences in parameters, such as excitation power into microchannels, data acquisition rates, and signal filtering into account.
Publication type
journal article
Identifiers
https://libra.unine.ch/handle/20.500.14713/64784
DOI
10.1021/ac0112465
-
https://libra.unine.ch/handle/123456789/4503
File(s)
Loading...
Thumbnail Image
Download
Name

Roulet_Jean-Christophe_-_Performance_of_an_Integrated_Microoptical_20170616.pdf

Type

Main Article

Size

860.24 KB

Format

Adobe PDF

Checksum

(MD5):357ddee9ddf7fb77856e765ca8dfbda0

Université de Neuchâtel logo

Service information scientifique & bibliothèques

Rue Emile-Argand 11

2000 Neuchâtel

contact.libra@unine.ch

Service informatique et télématique

Rue Emile-Argand 11

Bâtiment B, rez-de-chaussée

Powered by DSpace-CRIS

v2.0.0

© 2025 Université de Neuchâtel

Portal overviewUser guideOpen Access strategyOpen Access directive Research at UniNE Open Access ORCIDWhat's new