Repository logo
Research Data
Publications
Projects
Persons
Organizations
English
Français
Log In(current)
  1. Home
  2. Publications
  3. Thèse de doctorat (doctoral thesis)
  4. Conjugacy growth series of groups

Conjugacy growth series of groups

Author(s)
Mercier, Valentin
Editor(s)
Ciobanu, Laura  
Poste de théorie des groupes et combinatoire  
Date issued
2017
Subjects
Théorie géométrique des groupes Théorie combinatoire des groupes Séries de croissance de conjugaison Propriétés asymptotiques des groupes Produits en couronne Langages formels Produits graphés Extensions HNN Geometric group theory Combinatorial group theory Conjugacy growth series Asymptotic properties of groups Wreath products Formal languages Graph products HNN-extensions
Abstract
Dans cette thèse nous étudions les séries de croissance de conjugaison de plusieurs groupes construits à partir d'autres groupes, en fonction des séries de croissance standard et de conjugaison des groupes de base, pour un système générateur spécifique. Ceci inclut (1) les groupes de la forme $G\wr L$ quand $L$ admet un graphe de Cayley qui est un arbre (2) les produits graphés (3) un produit libre particulier de la forme $\mathbb{Z}*\mathbb{Z}$ avec amalgamation sur $\mathbb{Z}$, et (4) des extensions HNN de produits graphés sur des sous-produits graphés isomorphes. Pour tous ces groupes mentionnés, on prouve que le rayon de convergence de la série de croissance de conjugaison est le même que celui de la série de croissance standard. Nous donnons une formule explicite pour la série de croissance de conjugaison des groupes $G\wr \mathbb{Z}$, $G\wr(C_2*C_2)$, de produits graphés, d'un produit libre particulier de la forme $\mathbb{Z}*\mathbb{Z}$ avec amalgamation sur $\mathbb{Z}$, d'extensions HNN de produits graphés sur des sous produits graphés isomorphes basés sur de sous-graphes disjoints, et pour une extension HNN de la forme $H*H$ sur lui-même en intervertissant les facteurs de groupes. Nous prouvons aussi à la fin de ce document que pour deux cardinaux infinis $\kappa_1$ et $\kappa_2$ avec $\kappa_1<\kappa_2$, il existe un groupe de cardinalité $\kappa_2$, avec $\kappa_1$ pour la cardinalité de son ensemble de classes de conjugaison., In this thesis we study the conjugacy growth series of several group constructions in terms of the standard and the conjugacy growth series of the building groups, with a specific generating set. This includes (1) groups of the form $G\wr L$ when $L$ admits a Cayley graph that is a tree, (2) graph products, (3) a specific free product of $\mathbb{Z}*\mathbb{Z}$ with amalgamation over $\mathbb{Z}$, and (4) some HNN-extensions of graph products over isomorphic subgraph products. For all the groups mentioned we prove that the radius of convergence of the conjugacy growth series is the same as the radius of convergence of the standard growth series. We give an explicit formula for the conjugacy growth series of the groups $G\wr \mathbb{Z}$, $G\wr (C_2*C_2)$, of the graph products, of a specific free product of $\mathbb{Z}*\mathbb{Z}$ with amalgamation over $\mathbb{Z}$, of the HNN-extension of graph products over isomorphic subgraph products based on disjoint subgraphs, and for an HNN-extension of a group of the form $H*H$ over itself by swapping the factor groups. We also prove at the end that for two infinite cardinals $\kappa_1$ and $\kappa_2$ with $\kappa_1<\kappa_2$, there exists a group of cardinality $\kappa_2$, with $\kappa_1$ for the cardinality of its set of conjugacy classes.
Notes
Thèse de doctorat : Université de Neuchâtel, 2017
Publication type
doctoral thesis
Identifiers
https://libra.unine.ch/handle/20.500.14713/32119
DOI
10.35662/unine-thesis-2607
File(s)
Loading...
Thumbnail Image
Download
Name

00002607.pdf

Type

Main Article

Size

1.35 MB

Format

Adobe PDF

Université de Neuchâtel logo

Service information scientifique & bibliothèques

Rue Emile-Argand 11

2000 Neuchâtel

contact.libra@unine.ch

Service informatique et télématique

Rue Emile-Argand 11

Bâtiment B, rez-de-chaussée

Powered by DSpace-CRIS

libra v2.1.0

© 2025 Université de Neuchâtel

Portal overviewUser guideOpen Access strategyOpen Access directive Research at UniNE Open Access ORCIDWhat's new