Repository logo
Research Data
Publications
Projects
Persons
Organizations
English
Français
Log In(current)
  1. Home
  2. Authorities
  3. Projets
  4. Analyse géométrique sur les groupes et les variétés
  • Details
  • Publications
Project Title
Analyse géométrique sur les groupes et les variétés
Internal ID
16981
Principal Investigator
Valette, Alain  
Colbois, Bruno  
Status
Completed
Start Date
October 1, 2007
End Date
September 30, 2011
Investigators
Roulot, Simon
Moon, Soyoung
Crevoisier, Fabien
Otera, Daniele
Nguyen, Van The Lionel
Balacheff, Florent
Organisations
Institut de mathématiques  
Identifiants
https://libra.unine.ch/handle/20.500.14713/2426
-
https://libra.unine.ch/handle/123456789/1557
Keywords
Kazhdan's property (T) Affine actions Haagerup property K-theory of Banach algebras Ends of groups Amenable groups Spectral theory on Riemannian manifolds Eigenvalues Differential forms Extremal metrics Hilbert geometry Spaces of nonpositive curvature
Description
Project A: Property (T) and affine actions on Hilbert and Banach spaces (head: Alain Valette) The project will deal with two main themes:
-Property (T): relations between various notions of isolation, for non-unitary finite-dimensional representations (in terms of Fell-Jacobson topology, in terms of Banach algebras, cohomologically...); K-theory of the corresponding Banach algebras and link with the existing K-theoretic versions of tensoring with finite-dimensional representations; study of strong forms of property (T) for simple algebraic groups over non-archimedean local fields.
-Affine isometric actions on Hilbert spaces: stability of the class of Haagerup groups (semi-direct products, wreath products, central sequences...); study of affine actions associated with the left regular representation; existence of proper or non-proper (but unbounded) 1-cocycles; study of the structure of orbits in affine actions; geometric group theory and cohomological interpretation of end-depth.

Project B: Spectral theory on Riemannian manifolds and Hilbert geometry (head: Bruno Colbois). This project proposes two directions of research:
- the spectral theory of Riemannian manifolds;
- the study of Hilbert geometries on convex domains in R^n and related topics.
Université de Neuchâtel logo

Service information scientifique & bibliothèques

Rue Emile-Argand 11

2000 Neuchâtel

contact.libra@unine.ch

Service informatique et télématique

Rue Emile-Argand 11

Bâtiment B, rez-de-chaussée

Powered by DSpace-CRIS

libra v2.1.0

© 2025 Université de Neuchâtel

Portal overviewUser guideOpen Access strategyOpen Access directive Research at UniNE Open Access ORCIDWhat's new