Repository logo
Research Data
Publications
Projects
Persons
Organizations
English
Français
Log In(current)
  1. Home
  2. Publications
  3. Thèse de doctorat (doctoral thesis)
  4. High resolution differential laser interferometry for the VLTI (Very Large Telescope Interferometer)

High resolution differential laser interferometry for the VLTI (Very Large Telescope Interferometer)

Author(s)
Scherler, Olivier
Editor(s)
Dändliker, René  
Labo d'optique appliquée  
Date issued
2006
Subjects
Metrology Interferometry Superheterodyne Detection Laser Stabilisation Very Large Telescope Interferometer
Abstract
One method for locating extrasolar planets is to observe the lateral movement of a star in the sky caused by a planet in orbit around it. In order to detect this displacement, the angular position of the star has to be measured with high accuracy. This technique is called astrometry. The Very Large Telescope Interferometer (VLTI) is operated by the European Southern Observatory and located at the Paranal Observatory in Chile. The purpose of the PRIMA instrument (Phase Referenced Imaging and Micro-arcsecond Astrometry) of the VLTI is to perform high-resolution astrometric measurements and high-resolution imaging of faint stars using white light interferometry, by combining the light collected by two telescopes. In order to allow the detection of extrasolar planets, the astrometric measurement has to be performed with micro-arcsecond accuracy. In astrometric mode the PRIMA instrument observes two targets at the same time: the object of scientific interest, and a bright reference star. The angular position of the science object relative to the reference star is obtained by monitoring the differential optical path travelled by the light of each object in two separate white-light interferometers. The aim of this work was to develop a high-resolution laser metrology based on superheterodyne interferometry, with an accuracy of 5 nm over a differential optical path of 100 mm. Moreover the laser source had to be stabilised on an absolute frequency reference, in order to ensure the long-term stability and calibration required to achieve the target performance. Superheterodyne interferometry allowed the direct measurement of the differential optical path using two heterodyne interferometers working with two different frequency shifts. The differential phase measurement between the two interferometers was obtained by electronic mixing of the two heterodyne signals, leading to the differential optical path needed for the astrometric measurement.
Notes
Thèse de doctorat : Université de Neuchâtel, 2006 ; Th. 2090
Publication type
doctoral thesis
Identifiers
https://libra.unine.ch/handle/20.500.14713/32883
DOI
10.35662/unine-thesis-2090
File(s)
Loading...
Thumbnail Image
Download
Name

Th_ScherlerO.pdf

Type

Main Article

Size

2.4 MB

Format

Adobe PDF

Université de Neuchâtel logo

Service information scientifique & bibliothèques

Rue Emile-Argand 11

2000 Neuchâtel

contact.libra@unine.ch

Service informatique et télématique

Rue Emile-Argand 11

Bâtiment B, rez-de-chaussée

Powered by DSpace-CRIS

libra v2.2.0

© 2026 Université de Neuchâtel

Portal overviewUser guideOpen Access strategyOpen Access directive Research at UniNE Open Access ORCIDWhat's new