Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Notices
  4. Petites valeurs propres des p-formes différentielles et classe d'Euler des S1-fibrés
 
  • Details
Options
Vignette d'image

Petites valeurs propres des p-formes différentielles et classe d'Euler des S1-fibrés

Auteur(s)
Colbois, Bruno 
Institut de mathématiques 
Courtois, Gilles
Date de parution
2000-12-21
In
Annales Scientifiques de l'Ecole Normale Supérieure
Vol.
5
No
33
De la page
611
A la page
645
Mots-clés
  • COLLAPSING RIEMANNIAN-MANIFOLDS
  • SPECTRAL SEQUENCES
  • LAPLACIAN
  • CURVATURE
  • COLLAPSING RIEMANNIAN...

  • SPECTRAL SEQUENCES

  • LAPLACIAN

  • CURVATURE

Résumé
Let M(n, a, d) be the set of compact oriented Riemannian manifolds (M, g) of dimension n whose sectional curvature K-g and diameter d(g) satisfy \K-g\ less than or equal to a and d(g) less than or equal to d. Let M(n, a, d, rho) be the subset of M(n, a, d) of those manifolds (M, g) such that the injectivity radius is greater than or equal to rho. if (M, g) is an element of M(n + 1, a, d) and (N, h) is an element of M(n, a', d') are sufficiently close in the sense of Gromov-Hausdorff, M is a circle bundle over N according to a theorem of K. Fukaya. When the Gromov-Hausdorff distance between (M, g) and (N, h) is small enough, we show that there exists m(p) - b(p)(N) + b(p-1) (N) - b(p)(M) small eigenvalues of the Laplacian acting on differential p-forms on M, 1 < p < n + 1, where b(p) denotes the p-th Betti number. We give uniform bounds of these eigenvalues depending on the Euler class of the circle bundle S-1 --> M --> N and the Gromov-Hausdorff distance between (M, g) and (N, h). (C) 2000 Editions scientifiques et medicales Elsevier SAS.
Identifiants
https://libra.unine.ch/handle/123456789/8526
Type de publication
journal article
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCIDNouveautés

Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel
contact.libra@unine.ch

Propulsé par DSpace, DSpace-CRIS & 4Science | v2022.02.00