Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Notices
  4. Eigenvalues estimate for the Neumann problem of a bounded domain
 
  • Details
Options
Vignette d'image

Eigenvalues estimate for the Neumann problem of a bounded domain

Auteur(s)
Colbois, Bruno 
Institut de mathématiques 
Maerten, Daniel
Date de parution
2008-12-21
In
Journal of Geometric Analysis
Vol.
4
No
18
De la page
1022
A la page
1032
Mots-clés
  • Neumann spectrum
  • upper bound
  • Weyl law
  • metric geometry
  • METRICS
  • Neumann spectrum

  • upper bound

  • Weyl law

  • metric geometry

  • METRICS

Résumé
In this note, we investigate upper bounds of the Neumann eigenvalue problem for the Laplacian of a domain Omega in a given complete ( not compact a priori) Riemannian manifold ( M, g). For this, we use test functions for the Rayleigh quotient subordinated to a family of open sets constructed in a general metric way, interesting for itself. As applications, we prove that if the Ricci curvature of ( M, g) is bounded below Ric(g) >= -( n - 1) a(2), a >= 0, then there exist constants A(n) > 0, B-n > 0 only depending on the dimension, such that lambda(k)(Omega)
Identifiants
https://libra.unine.ch/handle/123456789/8564
Type de publication
journal article
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCIDNouveautés

Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel
contact.libra@unine.ch

Propulsé par DSpace, DSpace-CRIS & 4Science | v2022.02.00