Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Notices
  4. Eigenvalues of the laplacian acting on p-forms and metric conformal deformations
 
  • Details
Options
Vignette d'image

Eigenvalues of the laplacian acting on p-forms and metric conformal deformations

Auteur(s)
Colbois, Bruno 
Institut de mathématiques 
El Soufi, Ahmad
Date de parution
2006
In
Proceedings of the American Mathematical Society
Vol.
3
No
134
De la page
715
A la page
721
Mots-clés
  • Laplacian
  • p-forms
  • eigenvalue
  • conformal deformations
  • 1ST EIGENVALUE
  • GAP
  • Laplacian

  • p-forms

  • eigenvalue

  • conformal deformation...

  • 1ST EIGENVALUE

  • GAP

Résumé
Let (M, g) be a compact connected orientable Riemannian manifold of dimension n >= 4 and let lambda(k,p)(g) be the k-th positive eigenvalue of the Laplacian. Delta g,p = dd* + d* d acting on differential forms of degree p on M. We prove that the metric g can be conformally deformed to a metric g', having the same volume as g, with arbitrarily large lambda 1, p(g') for all p is an element of [2,n-2]. Note that for the other values of p, that is p = 0, 1, n-1 and n, one can deduce from the literature that, for all k > 0, the k-th eigenvalue lambda(k,p) is uniformly bounded on any conformal class of metrics of fixed volume on M. For p = 1, we show that, for any positive integer N, there exists a metric g(N) conformal to g such that, for all k
Identifiants
https://libra.unine.ch/handle/123456789/8556
Type de publication
journal article
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCIDNouveautés

Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel
contact.libra@unine.ch

Propulsé par DSpace, DSpace-CRIS & 4Science | v2022.02.00