Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Notices
  4. Generalized Spatial Regression with Differential Regularization
 
  • Details
Options
Vignette d'image

Generalized Spatial Regression with Differential Regularization

Auteur(s)
Wilhelm, Matthieu 
Institut de statistique 
Sangalli, Laura M.
Date de parution
2016-5-10
In
Journal of Statistical Computation and Simulation
Vol.
13
No
86
De la page
2497
A la page
2518
Revu par les pairs
1
Résumé
We propose a method for the analysis of data scattered over a spatial irregularly shaped domain and having a distribution within the exponential family. This is a generalized additive model for spatially distributed data. The model is fitted by maximizing a penalized log-likelihood function with a roughness penalty term that involves a differential operator of the spatial field over the domain of interest. Efficient spatial field estimation is achieved resorting to the finite element method, which provides a basis for piecewise polynomial surfaces. The method is illustrated by an application to the study of criminality in the city of Portland, Oregon, USA.
Identifiants
https://libra.unine.ch/handle/123456789/24235
_
10.1080/00949655.2016.1182532#abstract
Type de publication
journal article
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCIDNouveautés

Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel
contact.libra@unine.ch

Propulsé par DSpace, DSpace-CRIS & 4Science | v2022.02.00