Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Notices
  4. A pinching theorem for the first eigenvalue of the Laplacian on hypersurfaces of the Euclidean space
 
  • Details
Options
Vignette d'image

A pinching theorem for the first eigenvalue of the Laplacian on hypersurfaces of the Euclidean space

Auteur(s)
Colbois, Bruno 
Institut de mathématiques 
Grosjean, Jean-François
Date de parution
2007
In
Commentarii Mathematici Helvetici
Vol.
1
No
82
De la page
175
A la page
195
Mots-clés
  • spectrum
  • Laplacian
  • pinching results
  • hypersurfaces
  • POSITIVE RICCI CURVATURE
  • MANIFOLDS
  • DIAMETER
  • SUBMANIFOLDS
  • spectrum

  • Laplacian

  • pinching results

  • hypersurfaces

  • POSITIVE RICCI CURVAT...

  • MANIFOLDS

  • DIAMETER

  • SUBMANIFOLDS

Résumé
In this paper, we give pinching theorems for the first nonzero eigenvalue lambda(1) (M) of the Laplacian on the compact hypersurfaces of the Euclidean space. Indeed, we prove that if the volume of M is I then, for any epsilon > 0, there exists a constant C, depending on the dimension n of M and the L-infinity-norm of the mean curvature H, so that if the L-2p-norm parallel to H parallel to(2p) (p >= 2) of H satisfies n parallel to H parallel to(2)(2p)-C-epsilon < lambda(1) (M), then the Hausdorff-distance between M and a round sphere of radius (n/lambda(1) (M))(1/2) is smaller than epsilon. Furthermore, we prove that if C is a small enough constant depending on n and the L-infinity-norm of the second fundamental form, then the pinching condition n parallel to H parallel to(2)(2p)-C < lambda(1) (M) implies that M is diffeomorphic to an n-dimensional sphere.
Identifiants
https://libra.unine.ch/handle/123456789/8562
Type de publication
journal article
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCIDNouveautés

Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel
contact.libra@unine.ch

Propulsé par DSpace, DSpace-CRIS & 4Science | v2022.02.00