Options
Metal-framework degradation reactions of the mixed-metal cluster anions [M3Ir(CO)(13)](-) (M=Ru, Os) with bis(diphenylphosphino)methane and with tricyclohexylphosphine: synthesis and structure of HRu2Ir(CO)(5)(dppm)(3), HRu2Ir(CO)(6)(PCy3)(3), H2Os2Ir2(CO)(10)(PCy3)(2) and H3Os3Ir(CO)(8)(PCy3)(3)
Auteur(s)
Haak, Susanne
Neels, Antonia
Date Issued
1999
Journal
Polyhedron
Vol.
11
No
18
From page
1675
To page
1683
Abstract
The mixed-metal cluster anions [M3Ir(CO)(13)](-) (M=Ru, Os) react in methanol under metal-framework degradation with bis(diphenylphosphino)methane (dppm) or tricyclohexylphosphine (PCy3) to give a series of neutral tri- and tetranuclear mixed-metal clusters. The reaction of [M3Ir(CO)(13)](-) (M=Ru, Os) with dppm leads to the phosphine-substituted hydrido derivatives HRu2Ir(CO)(5)(dppm)(3) (1) and HOs2Ir(CO)(5)(dppm), (2), respectively. The two 48e clusters show a triangular arrangement of the M2Ir skeleton. The dppm ligands are coordinated in bridging positions over each metal-metal edge; the hydride is bonded terminally to the iridium atom. Cluster degradation is also observed by treating [Ru3Ir(CO)(13)](-) with PCy3 in methanol, giving the highly electron-deficient (44e) mixed-metal cluster HRu2Ir(CO)(6)(PCy3)(3) (3). The reaction of the osmium homologue [Os3Ir(CO)(13)](-) with PCy3 under the same conditions leads to a mixture of the neutral tetranuclear clusters H2Os2Ir2(CO)(10)(PCy3)(2) (4) and H3Os3Ir(CO)(8)(PCy3)(3) (5). Both clusters, 4 and 5 still have a tetrahedral metal core like the starting cluster anion but in 4 an osmium atom has been replaced by an iridium atom. The molecular structures of 1, 3, 4 and 5 were confirmed by single-crystal X-ray structure analyses. (C) 1999 Elsevier Science Ltd. All rights reserved.
Publication type
journal article