Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Notices
  4. Tubes and eigenvalues for negatively curved manifolds
 
  • Details
Options
Vignette d'image

Tubes and eigenvalues for negatively curved manifolds

Auteur(s)
Buser, Peter
Colbois, Bruno 
Institut de mathématiques 
Dodziuk, Jozef
Date de parution
1993
In
Journal of Geometric Analysis
Vol.
1
No
3
De la page
1
A la page
26
Mots-clés
  • CUSPS
  • EIGENVALUES
  • LAPLACIAN
  • NEGATIVE CURVATURE
  • TUBES
  • COMPARISON-THEOREMS
  • CURVATURE
  • VOLUME
  • SPACES
  • CUSPS

  • EIGENVALUES

  • LAPLACIAN

  • NEGATIVE CURVATURE

  • TUBES

  • COMPARISON-THEOREMS

  • CURVATURE

  • VOLUME

  • SPACES

Résumé
We investigate the structure of the spectrum near zero for the Laplace operator on a complete negatively curved Riemannian manifold M. If the manifold is compact and its sectional curvatures K satisfy 1 less-than-or-equal-to K < 0, we show that the smallest positive eigenvalue of the Laplacian is bounded below by a constant depending only on the volume of M. Our result for a complete manifold of finite volume with sectional curvatures pinched between -a2 and -1 asserts that the number of eigenvalues of the Laplacian between 0 and (n -1)2/4 is bounded by a constant multiple of the volume of the manifold with the constant depending on a and the dimension only.
Identifiants
https://libra.unine.ch/handle/123456789/8540
Type de publication
journal article
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCIDNouveautés

Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel
contact.libra@unine.ch

Propulsé par DSpace, DSpace-CRIS & 4Science | v2022.02.00