Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Publications
  4. Using past experience to optimize audit sampling design
 
  • Details
Options
Vignette d'image

Using past experience to optimize audit sampling design

Auteur(s)
Marazzi, Alfio 
Institut de statistique 
Tillé, Yves 
Institut de statistique 
Date de parution
2017-8-9
In
Review of Quantitative Finance and Accounting
Vol.
2
No
49
De la page
435
A la page
462
Mots-clés
  • Audit Hospital bill a...

  • Thompson Estimator

Résumé
Optimal sampling designs for audit, minimizing the mean squared error of the estimated amount of the misstatement, are proposed. They are derived from a general statistical model that describes the error process with the help of available auxiliary information. We show that, if the model is adequate, these optimal designs based on balanced sampling with unequal probabilities are more efficient than monetary unit sampling. We discuss how to implement the optimal designs in practice. Monte Carlo simulations based on audit data from the Swiss hospital billing system confirms the benefits of the proposed method.
URI
https://libra.unine.ch/handle/123456789/18937
DOI
10.1007/s11156-016-0596-7
Autre version
https://link.springer.com/article/10.1007/s11156-016-0596-7
Type de publication
Resource Types::text::journal::journal article
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCID

Adresse:
UniNE, Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel

Construit avec Logiciel DSpace-CRIS Maintenu et optimiser par 4Sciences

  • Paramètres des témoins de connexion
  • Politique de protection de la vie privée
  • Licence de l'utilisateur final