Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Notices
  4. Eigenvalue estimate for the rough Laplacian on differential forms
 
  • Details
Options
Vignette d'image

Eigenvalue estimate for the rough Laplacian on differential forms

Auteur(s)
Colbois, Bruno 
Institut de mathématiques 
Maerten, Daniel
Date de parution
2010-2-21
In
Manuscripta Math.
Vol.
3-4
No
132
De la page
399
A la page
413
Mots-clés
  • Rough Laplacian
  • eigenvalue estimate
  • differential forms
  • Weyl law
  • Rough Laplacian

  • eigenvalue estimate

  • differential forms

  • Weyl law

Résumé
We study the spectrum of the rough Laplacian acting on differential
forms on a compact Riemannian manifold (M,g).
We first construct on M metrics of volume 1 whose spectrum is as large as desired.
Then, provided that the Ricci curvature of g is bounded below,
we relate the spectrum of the rough Laplacian on 1--forms to the spectrum of the Laplacian on functions, and derive some upper bound in agreement with the asymptotic Weyl law.
Identifiants
https://libra.unine.ch/handle/123456789/8598
Type de publication
journal article
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCIDNouveautés

Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel
contact.libra@unine.ch

Propulsé par DSpace, DSpace-CRIS & 4Science | v2022.02.00