Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Notices
  4. Stability of the Standard Crank-Nicolson-Galerkin Scheme Applied to the Diffusion-Convection Equation - some new insights
 
  • Details
Options
Vignette d'image

Stability of the Standard Crank-Nicolson-Galerkin Scheme Applied to the Diffusion-Convection Equation - some new insights

Auteur(s)
Perrochet, Pierre 
Centre d'hydrogéologie et de géothermie 
Bérod, Dominique
Date de parution
1993
In
Water Resources Research
Vol.
9
No
29
De la page
3291
A la page
3297
Mots-clés
  • ELEMENT
  • ELEMENT

Résumé
A stability analysis of the classical Crank-Nicolson-Galerkin (CNG) scheme applied to the one-dimensional solute transport equation is proposed on the basis of two fairly different approaches. Using a space-time eigenvalue analysis, it is shown, al least for subsurface hydrology applications, that the CNG scheme is theoretically stable under the condition PeCr less-than-or-equal-to 2, where Pe and Cr are the mesh Peclet and Courant numbers. Then, to assess the computational stability of the scheme, the amplification matrix is constructed, and its norm is displayed in the (Pe, Cr) space. The results indicate that the norm of the amplification matrix is never smaller than unity and exhibits a hyperbolic nature analogous to the above theoretical condition.
Identifiants
https://libra.unine.ch/handle/123456789/12091
Type de publication
journal article
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCIDNouveautés

Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel
contact.libra@unine.ch

Propulsé par DSpace, DSpace-CRIS & 4Science | v2022.02.00