Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Notices
  4. IGS: an IsoGeometric approach for Smoothing on surfaces
 
  • Details
Options
Vignette d'image

IGS: an IsoGeometric approach for Smoothing on surfaces

Auteur(s)
Wilhelm, Matthieu 
Institut de statistique 
Dedè, Luca
Sangalli, Laura M.
Wilhelm, Pierre
Date de parution
2016-1-14
In
Computer methods in applied mechanics and engineering
No
302
De la page
70
A la page
89
Mots-clés
  • Functional data analysis Isogeometric analysis Smoothing on surfaces
  • Functional data analy...

Résumé
We propose an Isogeometric approach for smoothing on surfaces, namely estimating a function starting from noisy and discrete measurements. More precisely, we aim at estimating functions lying on a surface represented by NURBS, which are geometrical representations commonly used in industrial applications. The estimation is based on the minimization of a penalized least-square functional. The latter is equivalent to solve a 4th-order Partial Differential Equation (PDE). In this context, we use Isogeometric Analysis (IGA) for the numerical approximation of such surface PDE, leading to an IsoGeometric Smoothing (IGS) method for fitting data spatially distributed on a surface. Indeed, IGA facilitates encapsulating the exact geometrical representation of the surface in the analysis and also allows the use of at least globally C^1-Continuous NURBS basis functions for which the 4th-order PDE can be solved using the standard Galerkin method. We show the performance of the proposed IGS method by means of numerical simulations and we apply it to the estimation of the pressure coefficient, and associated aerodynamic force on a winglet of the SOAR space shuttle.
Identifiants
https://libra.unine.ch/handle/123456789/24234
Type de publication
journal article
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCIDNouveautés

Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel
contact.libra@unine.ch

Propulsé par DSpace, DSpace-CRIS & 4Science | v2022.02.00