Logo du site
  • English
  • Français
  • Se connecter
Logo du site
  • English
  • Français
  • Se connecter
  1. Accueil
  2. Université de Neuchâtel
  3. Publications
  4. Asymptotic estimates of the first eigenvalue of the p-Laplacian
 
  • Details
Options
Vignette d'image

Asymptotic estimates of the first eigenvalue of the p-Laplacian

Auteur(s)
Colbois, Bruno 
Institut de mathématiques 
Matei, Ana-Maria
Date de parution
2003
In
Advanced Nonlinear Studies
Vol.
2
No
3
De la page
207
A la page
217
Mots-clés
  • p-Laplacian

  • first eigenvalue

  • asymptotic estimates

  • RIEMANN SURFACES

  • GRAPHS

Résumé
,We consider a 1-parameter family of hyperbolic surfaces M(t) of genus v which degenerate as t --> 0 and we obtain a precise estimate of lambda(1,p)(t), the first eigenvalue of the p-Laplacian (p > 1) on M(t). In some cases we also give a precise estimate of the first eigenfunctions. As a direct application, we obtain that the quotient (lambda1,q)(1/q)/(lambda1,p)(1/p) (which is invariant under scaling of the metric) is unbounded even on the set of Riemannian manifolds with constant sectional curvature. This is to our knowledge, the first example of a family of manifolds with this property. To prove our results we use in an essential way the geometry of hyperbolic surfaces which is very well known. We show that an eigenfunction for lambda(1,p)(t) of L-p norm one is almost constant in the L-p sense (as t --> 0) on the parts of M(t) with large injectivity radius, and we estimate precisely its p-energy on the parts with small injectivity radius.
URI
https://libra.unine.ch/handle/123456789/8568
Type de publication
Resource Types::text::journal::journal article
google-scholar
Présentation du portailGuide d'utilisationStratégie Open AccessDirective Open Access La recherche à l'UniNE Open Access ORCID

Adresse:
UniNE, Service information scientifique & bibliothèques
Rue Emile-Argand 11
2000 Neuchâtel

Construit avec Logiciel DSpace-CRIS Maintenu et optimiser par 4Sciences

  • Paramètres des témoins de connexion
  • Politique de protection de la vie privée
  • Licence de l'utilisateur final