Voici les éléments 1 - 2 sur 2
  • Publication
    Accès libre
    Hydromechanical insight of fracture opening and closure during in-situ hydraulic fracturing in crystalline rock
    (2020-9) ; ;
    Gischig, V.
    ;
    Jalali, M.
    ;
    Brixel, B.
    ;
    Krietsch, H.
    ;
    Roques, C.
    ;
    Amann, F.
    Six hydraulic fracturing (HF) experiments were conducted in situ at the Grimsel Test Site (GTS), Switzerland, using two boreholes drilled in sparsely fractured crystalline rock. High spatial and temporal resolution monitoring of fracture fluid pressure and strain improve our understanding of fracturing dynamics during and directly following high-pressure fluid injection. In three out of the six experiments, a shear-thinning fluid with an initial static viscosity approximately 30 times higher than water was used to understand the importance of fracture leak-off better. Diagnostic analyses of the shut-in phases were used to determine the minimum principal stress magnitude for the fracture closure cycles, yielding an estimate of the effective instantaneous shut-in pressure (effective ISIP) 4.49±0.22 MPa. The jacking pressure of the hydraulic fracture was measured during the pressurecontrolled step-test. A new method was developed using the uniaxial Fibre-Bragg Grating strain signals to estimate the jacking pressure, which agrees with the traditional flow versus pressure method. The technique has the advantage of observing the behavior of natural fractures next to the injection interval. The experiments can be divided into two groups depending on the injection location (i.e., South or North to a brittle-ductile S3 shear zone). The experiments executed South of this zone have a jacking pressure above the effective ISIP. The proximity to the S3 shear zone and the complex geological structure led to near-wellbore tortuosity and heterogeneous stress effects masking the jacking pressure. In comparison, the experiments North of the S3 shear zone has a jacking pressure below the effective ISIP. This is an effect related to shear dislocation and fracture opening. Both processes can occur almost synchronously and provide new insights into the complicated mixedmode deformation processes triggered by high-pressure injection.
  • Publication
    Accès libre
    Stress Measurements for an In Situ Stimulation Experiment in Crystalline Rock: Integration of Induced Seismicity, Stress Relief and Hydraulic Methods
    (2018-9)
    Krietsch, H.
    ;
    Gischig, V.
    ;
    Evans, K. F.
    ;
    Doetsch, J.
    ;
    ; ;
    Amann, F.
    An extensive campaign to characterize rock stresses on the decameter scale was carried out in three 18–24 m long boreholes drilled from a tunnel in foliated granite at the Grimsel Test Site, Switzerland. The survey combined stress relief methods with hydrofracturing (HF) tests and concomitant monitoring of induced seismicity. Hydrofracture traces at the borehole wall were visualized with impression packer tests. The microseismic clouds indicate sub-vertical south-dipping HFs. Initial inversion of the overcoring strains with an isotropic rock model yielded stress tensors that disagreed with the HF and microseismic results. The discrepancy was eliminated using a transversely isotropic rock model, parametrized by a novel method that used numerical modelling of the in situ biaxial cell data to determine the requisite five independent elastic parameters. The results show that stress is reasonably uniform in the rock volume that lies to the south of a shear zone that cuts the NNW of the study volume. Stress in this volume is considered to be unperturbed by structures, and has principal stress magnitudes of 13.1–14.4 MPa for σ1, 9.2–10.2 MPa for σ2, and 8.6–9.7 MPa for σ3 with σ1 plunging to the east at 30–40°. To the NNW of the uniform stress regime, the minimum principal stress declines and the principal axes rotate as the shear zone is approached. The stress perturbation is clearly associated with the shear zone, and may reflect the presence of more fragmented rock acting as a compliant inclusion, or remnant stresses arising from slip on the shear zone in the past.