Options
Dändliker, René
Nom
Dändliker, René
Affiliation principale
Fonction
Ancien.ne collaborateur.trice
Identifiants
Résultat de la recherche
Voici les éléments 1 - 2 sur 2
- PublicationAccès libreHigh resolution differential laser interferometry for the VLTI (Very Large Telescope Interferometer)(2006)
;Scherler, OlivierOne method for locating extrasolar planets is to observe the lateral movement of a star in the sky caused by a planet in orbit around it. In order to detect this displacement, the angular position of the star has to be measured with high accuracy. This technique is called astrometry. The Very Large Telescope Interferometer (VLTI) is operated by the European Southern Observatory and located at the Paranal Observatory in Chile. The purpose of the PRIMA instrument (Phase Referenced Imaging and Micro-arcsecond Astrometry) of the VLTI is to perform high-resolution astrometric measurements and high-resolution imaging of faint stars using white light interferometry, by combining the light collected by two telescopes. In order to allow the detection of extrasolar planets, the astrometric measurement has to be performed with micro-arcsecond accuracy. In astrometric mode the PRIMA instrument observes two targets at the same time: the object of scientific interest, and a bright reference star. The angular position of the science object relative to the reference star is obtained by monitoring the differential optical path travelled by the light of each object in two separate white-light interferometers. The aim of this work was to develop a high-resolution laser metrology based on superheterodyne interferometry, with an accuracy of 5 nm over a differential optical path of 100 mm. Moreover the laser source had to be stabilised on an absolute frequency reference, in order to ensure the long-term stability and calibration required to achieve the target performance. Superheterodyne interferometry allowed the direct measurement of the differential optical path using two heterodyne interferometers working with two different frequency shifts. The differential phase measurement between the two interferometers was obtained by electronic mixing of the two heterodyne signals, leading to the differential optical path needed for the astrometric measurement. - PublicationAccès libreHigh Resolution Interference Microscopy: A Tool for Probing Optical Waves in the Far-Field on a Nanometric Length Scale(2006)
;Rockstuhl, Carsten ;Märki, Iwan ;Scharf, Toralf ;Salt, Martin Guy; High Resolution Interference Microscopy (HRIM) is a technique that allows the characterization of amplitude and phase of electromagnetic wave-fields in the far-field with a spatial accuracy that corresponds to a few nanometers in the object plane. Emphasis is put on the precise determination of topological features in the wave-field, called phase singularities or vortices, which are spatial points within the electromagnetic wave at which the amplitude is zero and the phase is hence not determined. An experimental tool working in transmission with a resolution of 20 nm in the object plane is presented and its application to the optical characterization of various single and periodic nanostructures such as trenches, gratings, microlenses and computer generated holograms is discussed. The conditions for the appearance of phase singularities are theoretically and experimentally outlined and it is shown how dislocation pairs can be used to determine unknown parameters from an object. Their corresponding applications to metrology or in optical data storage systems are analyzed. In addition, rigorous diffraction theory is used in all cases to simulate the interaction of light with the nano-optical structures to provide theoretical confirmation of the experimental results.