Voici les éléments 1 - 2 sur 2
  • Publication
    Accès libre
    Mono and dinuclear rhodium, iridium and ruthenium complexes containing chelating 2,2′-bipyrimidine ligands: Synthesis, molecular structure, electrochemistry and catalytic properties
    (2007)
    Govindaswamy, Padavattan
    ;
    Canivet, Jérôme
    ;
    ; ;
    Štěpnička, Petr
    ;
    Ludvík, Jiří
    The mononuclear cations [(η5-C5Me5)RhCl(bpym)]+ (1), [(η5-C5Me5)IrCl(bpym)]+ (2), [(η6-p-PriC6H4Me)RuCl(bpym)]+ (3) and [(η6-C6Me6)RuCl(bpym)]+ (4) as well as the dinuclear dications [{(η5-C5Me5)RhCl}2 (bpym)]2+ (5), [{(η5-C5Me5)IrCl}2 (bpym)]2+ (6), [{(η6-p-PriC6H4Me)RuCl}2 (bpym)]2+ (7) and [{(η6-C6Me6)RuCl}2 (bpym)]2+ (8) have been synthesised from 2,2′-bipyrimidine (bpym) and the corresponding chloro complexes [(η5-C5Me5)RhCl2]2, [(η5-C5Me5)IrCl2]2, [(η6-PriC6H4Me)RuCl2]2 and [(η6-C6Me6)RuCl2]2, respectively. The X-ray crystal structure analyses of [3][PF6], [5][PF6]2, [6][CF3SO3]2 and [7][PF6]2 reveal a typical piano-stool geometry around the metal centres; in the dinuclear complexes the chloro ligands attached to the two metal centres are found to be, with respect to each other, cis oriented for 5 and 6 but trans for 7. The electrochemical behaviour of 1–8 has been studied by voltammetric methods. In addition, the catalytic potential of 1–8 for transfer hydrogenation reactions in aqueous solution has been evaluated: All complexes catalyse the reaction of acetophenone with formic acid to give phenylethanol and carbon dioxide. For both the mononuclear and dinuclear series the best results were obtained (50 °C, pH 4) with rhodium complexes, giving turnover frequencies of 10.5 h−1 for 1 and 19 h−1 for 5.
  • Publication
    Accès libre
    Dinuclear hexamethylbenzene ruthenium cations containing η12-2-(ferrocenyl)ethen-1-yl ligands: Synthesis, structure, electrochemistry
    (2006)
    Tschan, Mathieu J.-L.
    ;
    ;
    Ludvík, Jiří
    ;
    Štěpnička, Petr
    ;
    The cationic ferrocenyl-containing complexes [(η6-C6Me6)2Ru2 (μ-η12-CH–CHFc)2 (μ-H)]+ (3) and [(η6-C6Me6)2Ru2 (μ-PPh2)(μ-η12-CH–CHFc)(μ-H)]+ (4) have been synthesised in ethanol from ethynylferrocene and the dinuclear precursors [(η6-C6Me6)2Ru2 (μ-H)3]+ (1) and [(η6-C6Me6)2Ru2(μ-PPh2)(μ-H)2]+ (2) respectively, and isolated as tetrafluoroborate salts. The spectroscopic data of 3 and 4 as well as the single-crystal X-ray diffraction analysis of [4][BF4] show that the alkyne function of ethynylferrocene has been converted to a σ/π-ethenyl ligand by transfer of a bridging hydride from the diruthenium backbone onto the α-carbon of the triple bond in ethynylferrocene. The ferrocenyl-containing diruthenium compounds [3][BF4] and [4][BF4] as well as their parent compounds [1][BF4] and [2][BF4] have been studied by voltammetric techniques: Whereas 1 shows only an irreversible Ru(II)/Ru(III) oxidation, the phosphido-bridged derivative 2 displays two well-separated one-electron redox processes. In the case of 3 and 4, the ferrocenyl substituents give rise to additional reversible ferrocene/ferrocenium waves.