Voici les éléments 1 - 3 sur 3
  • Publication
    Accès libre
    Mono and dinuclear rhodium, iridium and ruthenium complexes containing chelating 2,2′-bipyrimidine ligands: Synthesis, molecular structure, electrochemistry and catalytic properties
    (2007)
    Govindaswamy, Padavattan
    ;
    Canivet, Jérôme
    ;
    ; ;
    Štěpnička, Petr
    ;
    Ludvík, Jiří
    The mononuclear cations [(η5-C5Me5)RhCl(bpym)]+ (1), [(η5-C5Me5)IrCl(bpym)]+ (2), [(η6-p-PriC6H4Me)RuCl(bpym)]+ (3) and [(η6-C6Me6)RuCl(bpym)]+ (4) as well as the dinuclear dications [{(η5-C5Me5)RhCl}2 (bpym)]2+ (5), [{(η5-C5Me5)IrCl}2 (bpym)]2+ (6), [{(η6-p-PriC6H4Me)RuCl}2 (bpym)]2+ (7) and [{(η6-C6Me6)RuCl}2 (bpym)]2+ (8) have been synthesised from 2,2′-bipyrimidine (bpym) and the corresponding chloro complexes [(η5-C5Me5)RhCl2]2, [(η5-C5Me5)IrCl2]2, [(η6-PriC6H4Me)RuCl2]2 and [(η6-C6Me6)RuCl2]2, respectively. The X-ray crystal structure analyses of [3][PF6], [5][PF6]2, [6][CF3SO3]2 and [7][PF6]2 reveal a typical piano-stool geometry around the metal centres; in the dinuclear complexes the chloro ligands attached to the two metal centres are found to be, with respect to each other, cis oriented for 5 and 6 but trans for 7. The electrochemical behaviour of 1–8 has been studied by voltammetric methods. In addition, the catalytic potential of 1–8 for transfer hydrogenation reactions in aqueous solution has been evaluated: All complexes catalyse the reaction of acetophenone with formic acid to give phenylethanol and carbon dioxide. For both the mononuclear and dinuclear series the best results were obtained (50 °C, pH 4) with rhodium complexes, giving turnover frequencies of 10.5 h−1 for 1 and 19 h−1 for 5.
  • Publication
    Accès libre
    Self-assembled chloro-bridged metallo-prismatic cations of the general formula [M65-C5Me5)63-tpt)2 (μ-Cl)6]6+ (M = Rh, Ir; tpt = 2,4,6-tri(pyridin-4-yl)-1,3,5-triazine)
    (2007)
    Govindaswamy, Padavattan
    ;
    ;
    Two cationic pentamethylcyclopentadienyl metal-based hexanuclear complexes with trigonal prismatic architecture have been synthesised through a two-step strategy. The dinuclear complexes [M(η5- C5Me5)(μ-Cl)Cl]2 (M = rhodium and iridium) react with 2,4,6-tri(pyridin-4-yl)-1,3,5-triazine (tpt) in dichloromethane to give the trinuclear complexes [Rh35-C5Me5)33-tpt)Cl6] (1) and [Ir35-C5Me5)33-tpt)Cl6] (2), respectively. Addition of silver triflate to 1 and 2 in dichloromethane connects two identical triangular panels to form the hexanuclear metallo-prismatic cations [Rh65-C5Me5)63-tpt)2 (μ-Cl)6]6+ (3) and [Ir65-C5Me5)63-tpt)2 (μ-Cl)6]6+ (4), respectively. Cations 3 and 4 have been isolated as their triflate salts and characterised by 1H NMR, IR and UV/visible spectroscopy.
  • Publication
    Accès libre
    Mono and dinuclear arene ruthenium complexes containing 6,7-dimethyl-2,3-di(pyridine-2-yl)quinoxaline as chelating ligand: Synthesis and molecular structure
    (2007) ; ;
    Govindaswamy, Padavattan
    ;
    Saïd-Mohamed, Cynthia
    The mononuclear cations of the general formula [(η6-arene)RuCl(dpqMe2)]+ (dpqMe2 = 6,7-dimethyl-2,3-di(pyridine-2-yl)quinoxaline; arene = C6H6, 1; C6H5Me, 2; p-PriC6H4Me, 3; C6Me6, 4) as well as the dinuclear dications [(η6-arene) 2Ru2Cl2(μ-dpqMe2)]2+ (arene = C6H6, 5; C6H5Me, 6; p-PriC6H4Me, 7; C6Me6, 8) have been synthesised from 6,7-dimethyl-2,3-di(pyridine-2-yl)quinoxaline (dpqMe2) and the corresponding chloro complexes [(η6-C6H6)Ru(μ-Cl)Cl]2, [(η6-C6H5Me)Ru(μ-Cl)Cl]2, [(η6-p-PriC6H4Me)Ru(μ-Cl)Cl]2 and [(η6-C6Me6)Ru(μ-Cl)Cl]2, respectively. The X-ray crystal structure analyses of [1][PF6], [3][PF6] and [6][PF6]2 reveal a typical piano-stool geometry around the metal centre; in the dinuclear complexes the two chloro ligands, with respect to each other, are found to be trans oriented.