Options
Therrien, Bruno
Nom
Therrien, Bruno
Affiliation principale
Fonction
Professeur titulaire
Email
bruno.therrien@unine.ch
Identifiants
Résultat de la recherche
3 Résultats
Voici les éléments 1 - 3 sur 3
- PublicationAccès libreMono and dinuclear rhodium, iridium and ruthenium complexes containing chelating 2,2′-bipyrimidine ligands: Synthesis, molecular structure, electrochemistry and catalytic properties(2007)
;Govindaswamy, Padavattan ;Canivet, Jérôme; ; ;Štěpnička, PetrLudvík, JiříThe mononuclear cations [(η5-C5Me5)RhCl(bpym)]+ (1), [(η5-C5Me5)IrCl(bpym)]+ (2), [(η6-p-PriC6H4Me)RuCl(bpym)]+ (3) and [(η6-C6Me6)RuCl(bpym)]+ (4) as well as the dinuclear dications [{(η5-C5Me5)RhCl}2 (bpym)]2+ (5), [{(η5-C5Me5)IrCl}2 (bpym)]2+ (6), [{(η6-p-PriC6H4Me)RuCl}2 (bpym)]2+ (7) and [{(η6-C6Me6)RuCl}2 (bpym)]2+ (8) have been synthesised from 2,2′-bipyrimidine (bpym) and the corresponding chloro complexes [(η5-C5Me5)RhCl2]2, [(η5-C5Me5)IrCl2]2, [(η6-PriC6H4Me)RuCl2]2 and [(η6-C6Me6)RuCl2]2, respectively. The X-ray crystal structure analyses of [3][PF6], [5][PF6]2, [6][CF3SO3]2 and [7][PF6]2 reveal a typical piano-stool geometry around the metal centres; in the dinuclear complexes the chloro ligands attached to the two metal centres are found to be, with respect to each other, cis oriented for 5 and 6 but trans for 7. The electrochemical behaviour of 1–8 has been studied by voltammetric methods. In addition, the catalytic potential of 1–8 for transfer hydrogenation reactions in aqueous solution has been evaluated: All complexes catalyse the reaction of acetophenone with formic acid to give phenylethanol and carbon dioxide. For both the mononuclear and dinuclear series the best results were obtained (50 °C, pH 4) with rhodium complexes, giving turnover frequencies of 10.5 h−1 for 1 and 19 h−1 for 5. - PublicationAccès libreSelf-assembled chloro-bridged metallo-prismatic cations of the general formula [M6 (η5-C5Me5)6 (μ3-tpt)2 (μ-Cl)6]6+ (M = Rh, Ir; tpt = 2,4,6-tri(pyridin-4-yl)-1,3,5-triazine)(2007)
;Govindaswamy, Padavattan; Two cationic pentamethylcyclopentadienyl metal-based hexanuclear complexes with trigonal prismatic architecture have been synthesised through a two-step strategy. The dinuclear complexes [M(η5- C5Me5)(μ-Cl)Cl]2 (M = rhodium and iridium) react with 2,4,6-tri(pyridin-4-yl)-1,3,5-triazine (tpt) in dichloromethane to give the trinuclear complexes [Rh3 (η5-C5Me5)3 (μ3-tpt)Cl6] (1) and [Ir3(η5-C5Me5)3 (μ3-tpt)Cl6] (2), respectively. Addition of silver triflate to 1 and 2 in dichloromethane connects two identical triangular panels to form the hexanuclear metallo-prismatic cations [Rh6 (η5-C5Me5)6 (μ3-tpt)2 (μ-Cl)6]6+ (3) and [Ir6 (η5-C5Me5)6 (μ3-tpt)2 (μ-Cl)6]6+ (4), respectively. Cations 3 and 4 have been isolated as their triflate salts and characterised by 1H NMR, IR and UV/visible spectroscopy. - PublicationAccès libreMono and dinuclear arene ruthenium complexes containing 6,7-dimethyl-2,3-di(pyridine-2-yl)quinoxaline as chelating ligand: Synthesis and molecular structure(2007)
; ; ;Govindaswamy, PadavattanSaïd-Mohamed, CynthiaThe mononuclear cations of the general formula [(η6-arene)RuCl(dpqMe2)]+ (dpqMe2 = 6,7-dimethyl-2,3-di(pyridine-2-yl)quinoxaline; arene = C6H6, 1; C6H5Me, 2; p-PriC6H4Me, 3; C6Me6, 4) as well as the dinuclear dications [(η6-arene) 2Ru2Cl2(μ-dpqMe2)]2+ (arene = C6H6, 5; C6H5Me, 6; p-PriC6H4Me, 7; C6Me6, 8) have been synthesised from 6,7-dimethyl-2,3-di(pyridine-2-yl)quinoxaline (dpqMe2) and the corresponding chloro complexes [(η6-C6H6)Ru(μ-Cl)Cl]2, [(η6-C6H5Me)Ru(μ-Cl)Cl]2, [(η6-p-PriC6H4Me)Ru(μ-Cl)Cl]2 and [(η6-C6Me6)Ru(μ-Cl)Cl]2, respectively. The X-ray crystal structure analyses of [1][PF6], [3][PF6] and [6][PF6]2 reveal a typical piano-stool geometry around the metal centre; in the dinuclear complexes the two chloro ligands, with respect to each other, are found to be trans oriented.