Voici les éléments 1 - 2 sur 2
  • Publication
    Accès libre
    Imaging microwave and DC magnetic fields in a vapor-cell Rb atomic clock
    (2015-11-6) ;
    Du, Guan-Xiang
    ;
    ;
    Horsley, Andrew
    ;
    Treutlein, Philipp
    ;
    We report on the experimental measurement of the dc and microwave magnetic field distributions inside a recently developed compact magnetron-type microwave cavity mounted inside the physics package of a high-performance vapor-cell atomic frequency standard. Images of the microwave field distribution with sub-100-μm lateral spatial resolution are obtained by pulsed optical-microwave Rabi measurements, using the Rb atoms inside the cell as field probes and detecting with a CCD camera. Asymmetries observed in the microwave field images can be attributed to the precise practical realization of the cavity and the Rb vapor cell. Similar spatially resolved images of the dc magnetic field distribution are obtained by Ramsey-type measurements. The T2 relaxation time in the Rb vapor cell is found to be position dependent and correlates with the gradient of the dc magnetic field. The presented method is highly useful for experimental in situ characterization of dc magnetic fields and resonant microwave structures, for atomic clocks or other atom-based sensors and instrumentation.
  • Publication
    Métadonnées seulement
    Imaging the Static Magnetic Field Distribution in a Vapor Cell Atomic Clock
    (2015-4-12) ;
    Du, Guan-Xiang
    ;
    ;
    Horsley, Andrew
    ;
    Treutlein, Philipp
    ;
    We use a Ramsey-type interaction scheme to measure spatially-resolved images of the static magnetic field (C-field) amplitude Bdc applied across the Rb cell in the physics package of a high-performance vapor-cell atomic clock. Low field variations of <; 0.5% are found across the recorded images, and Fourier analysis of the data indicates low variations of Bdc also along the direction of laser propagation. Images of the T2 relaxation time are obtained in a similar way, and show a distribution that correlates with the Bdc distribution. This indicates inhomogeneous dephasing due to C-field gradients, which also results in spatial variation of the T2 time for the clock transition.