Options
Vallée, Audrey-Anne
Nom
Vallée, Audrey-Anne
Affiliation principale
Fonction
Ancien.ne collaborateur.trice
Identifiants
Résultat de la recherche
Voici les éléments 1 - 3 sur 3
- PublicationAccès libreLinearisation for Variance Estimation by Means of Sampling Indicators: Application to Non‐response(2019-8-19)
; In order to estimate the variance of estimators in survey sampling, we consider a method in which the estimators are linearized with respect to the basic random variables: the sampling indicator and the response indicator. When a superpopulation model is assumed, the estimators can also be linearized with respect to the variable of interest. This method ensures the derivation of a variance since the estimated parameters are linearized with respect to the random variables directly. It becomes particularly straightforward to construct explicit variance estimators. All sources of randomness are taken into account. The effects caused by the complexity of the estimation method, the calibration and the nonresponse treatment, imputation or reweighting, appear automatically and explicitly in the linearization variables. Through a set of examples, we show the simplicity of the method. Some results regarding the estimation of variance with nonresponse can be obtained in a simpler way than the usual developments. A set of simulations illustrates the proposed methodology. - PublicationAccès libreHandling auxiliary variables in survey sampling and nonresponse(2019)
; Ce manuscrit est consacré à l’utilisation d’informations auxiliaires en échantillonnage et en non-réponse. Nous nous intéressons à l'intégration de variables auxiliaires dans les méthodes d'échantillonnage et au traitement de la non-réponse afin d'améliorer l'efficacité et la précision des enquêtes. Nous traitons également du calcul de la précision d'estimateurs. En effet, les variances deviennent rapidement difficiles à calculer lorsque les méthodes d’estimation sont sophistiquées. La thèse est organisée comme suit. Le premier chapitre consiste en une introduction à quelques concepts d’échantillonnage et de non-réponse. Dans le deuxième chapitre, nous développons un plan d'échantillonnage pour un inventaire forestier afin de satisfaire un certain nombre d'exigences. L’échantillon doit optimiser le travail des équipes au sol tout en assurant la sélection de tous les types d’arbres. Pour atteindre les objectifs, un plan d'échantillonnage équilibré et stratifié est utilisé dans un échantillon à deux degrés. Dans le troisième chapitre, nous discutons du calcul de la variance dans le cas d'une intersection entre deux échantillons indépendants. La variance et son estimateur peuvent être décomposés conditionnellement à un échantillon ou conditionnellement à l'autre. Dans des situations spécifiques, comme dans le cas de la non-réponse, il en résulte des simplifications bien pratiques. Le quatrième chapitre présente une méthode de linéarisation pour l'estimation de la variance en présence de non-réponse. Dans le cinquième chapitre, une méthode d'imputation pour une non-réponse en fromage suisse est développée. Cette méthode d'imputation utilise un plan d'échantillonnage équilibré et stratifié., This manuscript is dedicated to the use of auxiliary information in survey sampling and nonresponse. We are interested in the integration of auxiliary variables in sampling methods and in the treatment of nonresponse to improve the efficiency and the precision of surveys. We also deal with the calculation of the precision of estimators. Indeed, variances rapidly become difficult to calculate when the estimation methods are sophisticated. The thesis is organized as follows. The first chapter consists in an introduction to some concepts of survey sampling and nonresponse. In the second chapter, we develop a sampling design for a forest inventory in order to satisfy a number of requirements. The sample needs to optimize the work of the ground teams while ensuring the selection of every type of trees. To meet the objectives, stratified balanced sampling is used in a two-stage sample. In the third chapter, we discuss the calculation of the variance when two independent samples intersect. The variance and its estimator can be decomposed conditionally to one sample or conditionally to the other one. In specific situations, as in the nonresponse case, it results in convenient simplifications. The fourth chapter presents a linearization method for the estimation of the variance in the presence of nonresponse. In the fifth chapter, an imputation method for Swiss cheese nonresponse is developed. This imputation method uses stratified balanced sampling. - PublicationAccès libreRevisiting Variance Decomposition when Independent Samples Intersect(2017-7-21)
; The variance and the estimated variance of the expanded estimator in the intersection of two independent samples can be decomposed into two ways. Due to the inclusion probabilities, it is generally more practical to compute the variance with one decomposition. With the other one, it is more convenient to estimate the variance.