Options
Dimitrakakis, Christos
Nom
Dimitrakakis, Christos
Affiliation principale
Fonction
Professor
Email
christos.dimitrakakis@unine.ch
Identifiants
Résultat de la recherche
Voici les éléments 1 - 2 sur 2
- PublicationAccès libreInferential Induction: A Novel Framework for Bayesian Reinforcement Learning(2020-02-08T06:19:15Z)
;Hannes Eriksson ;Emilio Jorge; ;Debabrota BasuDivya GroverBayesian reinforcement learning (BRL) offers a decision-theoretic solution for reinforcement learning. While "model-based" BRL algorithms have focused either on maintaining a posterior distribution on models or value functions and combining this with approximate dynamic programming or tree search, previous Bayesian "model-free" value function distribution approaches implicitly make strong assumptions or approximations. We describe a novel Bayesian framework, Inferential Induction, for correctly inferring value function distributions from data, which leads to the development of a new class of BRL algorithms. We design an algorithm, Bayesian Backwards Induction, with this framework. We experimentally demonstrate that the proposed algorithm is competitive with respect to the state of the art. - PublicationAccès libreEpistemic Risk-Sensitive Reinforcement Learning(2019-06-14T16:25:20Z)
;Hannes ErikssonWe develop a framework for interacting with uncertain environments in reinforcement learning (RL) by leveraging preferences in the form of utility functions. We claim that there is value in considering different risk measures during learning. In this framework, the preference for risk can be tuned by variation of the parameter $\beta$ and the resulting behavior can be risk-averse, risk-neutral or risk-taking depending on the parameter choice. We evaluate our framework for learning problems with model uncertainty. We measure and control for \emph{epistemic} risk using dynamic programming (DP) and policy gradient-based algorithms. The risk-averse behavior is then compared with the behavior of the optimal risk-neutral policy in environments with epistemic risk.