Options
Szenteczki, Mark
Résultat de la recherche
A mirage of cryptic species: Genomics uncover striking mitonuclear discordance in the butterfly Thymelicus sylvestris
2019-6-24, Hinojosa, Joan C., Koubínová, Darina, Szenteczki, Mark, Pitteloud, Camille, Dincă, Vlad, Alvarez, Nadir, Vila, Roger
Mitochondrial DNA (mtDNA) sequencing has led to an unprecedented rise in the identification of cryptic species. However, it is widely acknowledged that nuclear DNA (nuDNA) sequence data are also necessary to properly define species boundaries. Next generation sequencing techniques provide a wealth of nuclear genomic data, which can be used to ascertain both the evolutionary history and taxonomic status of putative cryptic species. Here, we focus on the intriguing case of the butterfly Thymelicus sylvestris (Lepidoptera: Hesperiidae). We identified six deeply diverged mitochondrial lineages; three distributed all across Europe and found in sympatry, suggesting a potential case of cryptic species. We then sequenced these six lineages using double‐digest restriction‐site associated DNA sequencing (ddRADseq). Nuclear genomic loci contradicted mtDNA patterns and genotypes generally clustered according to geography, i.e., a pattern expected under the assumption of postglacial recolonization from different refugia. Further analyses indicated that this strong mtDNA/nuDNA discrepancy cannot be explained by incomplete lineage sorting, sex‐biased asymmetries, NUMTs, natural selection, introgression or Wolbachia‐mediated genetic sweeps. We suggest that this mitonuclear discordance was caused by long periods of geographic isolation followed by range expansions, homogenizing the nuclear but not the mitochondrial genome. These results highlight T. sylvestris as a potential case of multiple despeciation and/or lineage fusion events. We finally argue, since mtDNA and nuDNA do not necessarily follow the same mechanisms of evolution, their respective evolutionary history reflects complementary aspects of past demographic and biogeographic events.
Bacterial communities within Phengaris (Maculinea) alcon caterpillars are shifted following transition from solitary living to social parasitism of Myrmica ant colonies
2019-4-2, Szenteczki, Mark, Pitteloud, Camille, Casacci, Luca P., Kešnerová, Lucie, Whitaker, Melissa R.L., Engel, Philipp, Vila, Roger, Alvarez, Nadir
Bacterial symbionts are known to facilitate a wide range of physiological processes and ecological interactions for their hosts. In spite of this, caterpillars with highly diverse life histories appear to lack resident microbiota. Gut physiology, endogenous digestive enzymes, and limited social interactions may contribute to this pattern, but the consequences of shifts in social activity and diet on caterpillar microbiota are largely unknown. Phengaris alcon caterpillars undergo particularly dramatic social and dietary shifts when they parasitize Myrmica ant colonies, rapidly transitioning from solitary herbivory to ant tending (i.e., receiving protein‐rich regurgitations through trophallaxis). This unique life history provides a model for studying interactions between social living, diet, and caterpillar microbiota. Here, we characterized and compared bacterial communities within P. alcon caterpillars before and after their association with ants, using 16S rRNA amplicon sequencing and quantitative PCR. After being adopted by ants, bacterial communities within P. alcon caterpillars shifted substantially, with a significant increase in alpha diversity and greater consistency in bacterial community composition in terms of beta dissimilarity. We also characterized the bacterial communities within their host ants (Myrmica schencki), food plant (Gentiana cruciata), and soil from ant nest chambers. These data indicated that the aforementioned patterns were influenced by bacteria derived from caterpillars’ surrounding environments, rather than through transfers from ants. Thus, while bacterial communities are substantially reorganized over the life cycle of P. alcon caterpillars, it appears that they do not rely on transfers of bacteria from host ants to complete their development.