Voici les éléments 1 - 2 sur 2
  • Publication
    Accès libre
    Spatial and temporal heterogeneity in pollinator communities maintains within-species floral odour variation
    (2021-5-25) ; ;
    Galmán, Andrea
    ;
    Espíndola, Anahí
    ;
    Gibernau, Marc
    ;
    Alvarez, Nadir
    ;
    Flowering plants emit complex bouquets of volatile organic compounds (VOCs) to mediate interactions with their pollinators. These bouquets are undoubtedly influenced by pollinator-mediated selection, particularly in deceptively-pollinated species that rely on chemical mimicry. However, many uncertainties remain regarding how spatially and temporally heterogeneous pollinators affect the diversity and distribution of floral odour variation. Here, we characterized and compared the floral odours of ten populations of deceptively-pollinated Arum maculatum (Araceae), and inter-annual and decadal variation in pollinator attraction within these populations. Additionally, we transplanted individuals from all sampled populations to two common garden sites dominated by different pollinator species (Psychoda phalaenoides or Psycha grisescens), and compared pollinator attraction rates to investigate whether populations maintained odour blends adapted to a specific pollinator. We identified high within- and among-population variation in a common blend of VOCs found across the range of A. maculatum. We also observed shifts in pollinator community composition within several populations over 1–2 years, as well as over the past decade. Common garden experiments further revealed that transplanted inflorescences generally attracted the dominant local pollinator species in both transplant sites. However, one population (Forêt du Gâvre, France) appears to exclusively attract P. grisescens, even when transplanted to a P. phalaenoides-dominated site. Together, our results suggest that maintaining diverse floral odour bouquets within populations may be advantageous when pollinator communities vary over short timescales. We propose that temporally-replicated ecological data are one potential key to understanding variation in complex traits such as floral odour, and in some cases may reveal resiliency to shifting pollinator communities.
  • Publication
    Accès libre
    Elevational gradients in constitutive and induced oak defences based on individual traits and their correlated expression patterns
    (2020-12-2)
    Galmán, Andrea
    ;
    Abdala-Roberts, Luis
    ;
    Wartalska, Pola
    ;
    Covelo, Felisa
    ;
    ; ;
    Moreira, Xoaquín
    ;
    Elevational gradients are useful ecological settings for revealing the biotic and abi-otic drivers of plant trait variation and plant–insect interactions. However, most work focusing on plant defences has looked at individual traits and few studies have assessed multiple traits simultaneously, their correlated expression patterns, and abiotic fac-tors associated with such patterns across elevations. To address this knowledge gap, we studied elevational variation in direct (phenolic compounds) and indirect (volatile organic compounds) constitutive defences and their inducibility after feeding by a spe-cialist beetle Altica quercetorum in saplings of 18 wild populations of Quercus pyrenaica. We tested for: 1) clines in each defensive trait individually, 2) their patterns of corre-lated expression and 3) associations between any such clines and climatic factors. We found that constitutive direct defences (lignins and hydrolysable tannins) decreased with increasing elevation. We observed no elevational gradient for constitutive indi-rect defences (volatile organic compounds) or the inducibility of direct or indirect defensive traits when looking at groups of compounds. However, at individual tree-level, increased induction of two monoterpenes (α-fenchene and camphene) at higher elevation was shown. Furthermore, we show a significant pattern of co-expression of constitutive and induced phenolics across populations, which weakened with increas-ing elevation. Finally, we found no evidence that climatic factors were associated with either individual or correlated trait expression patterns across elevations. Overall, these findings call for moving beyond elevational clines in individual plant defences, and argue that assessing elevational shifts in trait correlated expression patterns and their underlying mechanisms can increase our understanding of plant defence evolution and plant–herbivore interactions along environmental gradients.