Voici les éléments 1 - 10 sur 17
Pas de vignette d'image disponible
Publication
Métadonnées seulement

Long-Term Stability Analysis Towards < 10-14 Level for a Highly Compact POP Rb Cell Atomic Clock

2019-4-14, Almat, Nil, Gharavipour, Mohammadreza, Moreno, William, Affolderbach, Christoph, Mileti, Gaetano

Long-term frequency instabilities in vapor-cell clocks mainly arise from fluctuations of the experimental and environmental parameters that are converted to clock frequency fluctuations via various physical processes. Here, we discuss the frequency sensitivities and the resulting stability limitations at one day timescale for a rubidium vapor-cell clock based on a compact magnetron-type cavity operated in air (no vacuum environment). Under ambient laboratory conditions, the external atmospheric pressure fluctuations may dominantly limit the clock stability via the barometric effect. We establish a complete long-term instability budget for our clock operated under stable pressure conditions. Where possible, the fluctuations of experimental parameters are measured via the atomic response. The measured clock instability of < 2·E10.14 at one day is limited by the intensity light-shift effect, which could further be reduced by active stabilization of the laser intensity or stronger optical pumping. The analyses reported here show the way towards simple, compact, and low-power vapor-cell atomic clocks with excellent long-term stabilities. ≤ 10.14 at one day when operated in ambient laboratory conditions.

Pas de vignette d'image disponible
Publication
Métadonnées seulement

Imaging the Static Magnetic Field Distribution in a Vapor Cell Atomic Clock

2015-4-12, Affolderbach, Christoph, Du, Guan-Xiang, Bandi Nagabhushan, Thejesh, Horsley, Andrew, Treutlein, Philipp, Mileti, Gaetano

We use a Ramsey-type interaction scheme to measure spatially-resolved images of the static magnetic field (C-field) amplitude Bdc applied across the Rb cell in the physics package of a high-performance vapor-cell atomic clock. Low field variations of <; 0.5% are found across the recorded images, and Fourier analysis of the data indicates low variations of Bdc also along the direction of laser propagation. Images of the T2 relaxation time are obtained in a similar way, and show a distribution that correlates with the Bdc distribution. This indicates inhomogeneous dephasing due to C-field gradients, which also results in spatial variation of the T2 time for the clock transition.

Pas de vignette d'image disponible
Publication
Métadonnées seulement

Sub-Doppler diode laser frequency stabilization with the DAVLL scheme on the D1 line of a 87Rb vapor-cell

2006-9-18, Giannini, R., Breschi, Evelina, Affolderbach, Christoph, Bison, G., Mileti, Gaetano, Herzig, H.P., Weis, Antoine

We established an experimental set-up that allows laser stabilization using the Doppler1 and sub-Doppler2,3 Dichroic Atomic Vapor Laser Locking (DAVLL) and the Saturated Absorption (SA) scheme. In this report we present comparative studies between Doppler and sub-Doppler DAVLL using heterodyne frequency stability measurements with an independently SA stabilized laser. Some major sources of frequency instability are discussed together with ways to improve the stability. Special focus is laid on the sub-Doppler DAVLL stabilization technique where a new approach for getting higher stability is introduced. In our measurements, the 87Rb D1 line was used as reference atomic line.

Pas de vignette d'image disponible
Publication
Métadonnées seulement

Optical clocks in space

2006, Schiller, S, Gorlitz, A, Nevsky, A, Koelemeij, J C J, Wicht, A, Gill, P, Klein, H A, Margolis, H S, Mileti, Gaetano, Sterr, U, Riehle, F, Peik, E, Tamm, C, Ertmer, W, Rasel, E, Klein, V, Salomon, C, Tino, G M, Lemonde, P, Holzwarth, R, Hansch, T W

The performance of optical clocks has strongly progressed in recent years, and accuracies and instabilities of 1 part in 10(18) are expected in the near future. The operation of optical clocks in space provides new scientific and technological opportunities. In particular, an earth-orbiting satellite containing an ensemble of optical clocks would allow a precision measurement of the gravitational redshift, navigation with improved precision, mapping of the earth's gravitational potential by relativistic geodesy, and comparisons between ground clocks.

Pas de vignette d'image disponible
Publication
Métadonnées seulement

DFB-ridge laser diodes at 894 nm for Cesium atomic clocks

2016-2-13, Von Bandel, N., Garcia, M., Lecomte, M., Larrue, A., Robert, Y., Vinet, E., Driss, O., Parilaud, O., Krakowski, M., Gruet, Florian, Matthey-De-L'Endroit, Renaud, Mileti, Gaetano

Time and frequency applications are in need of high accuracy and high stability clocks. Optically pumped compact industrial Cesium atomic clocks are a promising approach that could satisfy these demands. However, the stability of these clocks relies, among others, on the performances of the laser diodes that are used. This issue has led the III-V Lab to commit to the European Euripides-LAMA project that aims to provide competitive compact optical Cesium clocks for ground applications. This work will provide key experience for further space technology qualification. III-V Lab is in charge of the design, fabrication and reliability of Distributed-Feedback diodes (DFB) at 894 nm (D1 line of Cesium) and 852 nm (D2 line). LTF-Unine is in charge of their spectral characterisation. The use of D1 line for pumping will provide simplified clock architecture compared to the D2 line pumping thanks to simpler atomic transitions and a larger spectral separation between lines in the 894 nm case. Also, D1 line pumping overcomes the issue of unpumped “idle states” that occur with D2 line. The modules should provide narrow linewidth (<1 MHz), very good reliability in time and, crucially, be less sensitive to optical feedback. The development of the 894 nm wavelength is grounded on III-V Lab results for 852 nm DFB. We show here results from Al-free active region with InGaAsP quantum well Ridge DFB lasers. We obtain the D1 Cs line (894.4 nm) at 67°C and 165 mA (optical power of 40 mW) with a high side mode suppression ratio. The wavelength evolution with temperature and current are respectively 0.06 nm/K and 0.003 nm/mA. The laser linewidth is less than 1 MHz. The Relative Intensity Noise (RIN) and the frequency noise are respectively less than 10-12 Hz-1 @ f ≥ 10 Hz and 109 Hz2/Hz @ f ≥ 10 Hz.

Pas de vignette d'image disponible
Publication
Métadonnées seulement

Spectroscopy of micro-fabricated Cs vapour cells for miniature atomic clocks

2010-9-20, Miletic, Danijela, Affolderbach, Christoph, Mileti, Gaetano

In this paper we present our spectroscopic studies on Coherent Population Trapping (CPT) in micro-fabricated Caesium cells and our evaluation of its application in miniature atomic frequency standards (atomic clocks). We observe the CPT signal on the Cs D1-line by coupling two hyperfine ground-state Zeeman sub-levels to a common excited state using two coherent electromagnetic fields created with a modulated DFB laser. Contrarily to double resonance, CPT does not require any microwave cavity, which should facilitate the miniaturization of a future atomic clock device. We study and report here on the light shift phenomena at different cell temperatures and laser wavelength. We also present resonance shifts due to cell temperature variations and clock frequency stability measurements. To the best of our knowledge, this article is the first report on light shift with Cs D1 line in a CPT vapour-cell atomic clock.

Pas de vignette d'image disponible
Publication
Accès libre

Frequency-stabilised laser reference system for trace-gas sensing applications from space

2006-6-27, Matthey-De-L'Endroit, Renaud, Affolderbach, Christoph, Mileti, Gaetano, Schilt, Stephane, Thévenaz, Luc

A four-wavelength low-power continuous-wave frequency laser reference system has been realised in the 935.4-nm range for water vapour differential absorption lidar (DIAL) applications. The system is built around laboratory extended-cavity and DFB diode lasers. Three lasers are directly locked to three water vapour absorption lines of different strength, whereas the wavelength of the fourth laser lies out of any absorption line (offline). On-line stabilisation is performed by wavelength modulation spectroscopy technique, while precise offline stabilisation is realised by an offset locking at 18.8 GHz. Offset frequency larger than 320 GHz has also been demonstrated at 1.55 μm, based on an all-fibre optical frequency comb. First steps towards the use of a photonic crystal fibre as ultra compact reference cell with long optical pathlength were realised. The developed techniques for direct and offset-lock laser stabilisation can also be applied to other gases and wavelengths, provided the required optical components are available for the laser wavelength considered.

Pas de vignette d'image disponible
Publication
Métadonnées seulement

High performance vapour-cell frequency standards

2015-10-27, Gharavipour, Mohammadreza, Affolderbach, Christoph, Kang, Songbai, Bandi Nagabhushan, Thejesh, Gruet, Florian, Pellaton, Matthieu, Mileti, Gaetano

We report our investigations on a compact high-performance rubidium (Rb) vapour-cell clock based on microwave-optical double-resonance (DR). These studies are done in both DR continuous-wave (CW) and Ramsey schemes using the same Physics Package (PP), with the same Rb vapour cell and a magnetron-type cavity with only 45 cm3 external volume. In the CW-DR scheme, we demonstrate a DR signal with a contrast of 26% and a linewidth of 334 Hz; in Ramsey-DR mode Ramsey signals with higher contrast up to 35% and a linewidth of 160 Hz have been demonstrated. Short-term stabilities of 1.4×10^-13 τ^-1/2 and 2.4×10^-13 τ^-1/2 are measured for CW-DR and Ramsey-DR schemes, respectively. In the Ramsey-DR operation, thanks to the separation of light and microwave interactions in time, the light-shift effect has been suppressed which allows improving the long-term clock stability as compared to CW-DR operation. Implementations in miniature atomic clocks are considered.

Pas de vignette d'image disponible
Publication
Métadonnées seulement

Recherches sur les horloges atomiques miniatures et optiques

2007, Mileti, Gaetano, Affolderbach, Christoph, Breschi, Evelina, Schori, Christian, Scherler, Patrick, Thomann, Pierre

Pas de vignette d'image disponible
Publication
Métadonnées seulement

Gas-cell atomic clocks for space: new results and alternative schemes

2006-6-27, Affolderbach, Christoph, Breschi, Evelina, Schori, Christian, Mileti, Gaetano

We present our development activities on compact Rubidium gas-cell atomic frequency standards, for use in space-borne and ground-based applications. We experimentally demonstrate a high-performance laser optically-pumped Rb clock for space applications such as telecommunications, science missions, and satellite navigation systems (e.g. GALILEO). Using a stabilised laser source and optimized gas cells, we reach clock stabilities as low as 1.5·10-12 τ-1/2 up to 103 s and 4·10-14 at 104 s. The results demonstrate the feasibility of a laser-pumped Rb clock reaching < 1·10-12 τ-1/2 in a compact device (<2 liters, 2 kg, 20 W), given optimization of the implemented techniques. A second activity concerns more radically miniaturized gas-cell clocks, aiming for low power consumption and a total volume around 1 cm3 , at the expense of relaxed frequency stability. Here miniaturized “chip-scale” vapour cells and use of coherent laser interrogation techniques are at the heart of the investigations.