Voici les éléments 1 - 10 sur 16
Pas de vignette d'image disponible
Publication
Accès libre

Characterizing Groundwater Quality, Recharge and Distribution under Anthropogenic conditions

2021, Burri, Nicole, Schirmer, Mario

La prise de conscience concernant la gestion durable des eaux souterraines gagne du terrain. Elle implique une compréhension adéquate de la complexité des processus naturels et anthropiques et de la manière dont ils affectent la qualité et la disponibilité des eaux souterraines. Ce projet de recherche visait à étudier les différents impacts qualitatifs sur les eaux souterraines et à fournir des méthodologies d'évaluation qui peuvent être employées pour assurer une utilisation quantitative durable des eaux souterraines. Le site d'étude, au nord-est de la Suisse, comprend des systèmes d'eaux souterraines situés à la fois dans des régions d’altidude et dans des plaines alluviales. Le bassin versant de la rivière Thur est une zone à la fois bien étudiée et d'une taille suffisamment grande (~1700 km2) pour être considérée comme un bassin versant à méso-échelle. Les objectifs spécifiques de ce projet de recherche comprenaient 1) la détermination des principaux contrôles de la contamination des eaux souterraines, 2) l'évaluation de la variabilité spatio-temporelle de la recharge des eaux souterraines, d'une manière applicable à d'autres bassins versants, et 3) la surveillance des eaux souterraines d'une manière adaptative et basée sur les événements. Ces objectifs de recherche ont été abordés en examinant d'abord les menaces qualitatives passées et présentes pour les eaux souterraines, es processus anthropogéniques et la façon dont ces derniers affectent la qualité des eaux souterraines à l'échelle mondiale. Ensuite, la recharge spatio-temporelle des eaux souterraines dans le bassin versant de la Thur a été estimée sur la base de données et de logiciels libres. Enfin, la variabilité des contributions des sources d'eau aux aquifères situés dans le bassin versant de la Thur a été déterminée en utilisant des données de traceurs conservateurs provenant de sites échantillonnés dans tout le bassin versant. La structure de cette thèse s'étend sur trois échelles différentes, allant de l'échelle globale, à la méso-échelle, et à l'échantillonnage localisé, et couvre ensuite différents niveaux de disponibilité des données. Afin d'illustrer les nombreuses menaces qualitatives qui pèsent sur les ressources en eau souterraine, certains des principaux contaminants issus des activités anthropiques, à savoir agricoles, urbaines et industrielles, ont été présentés sous la forme d'une revue de littérature. En outre, une sélection d'études de cas décrivant les préoccupations continues au sujet des contaminants établis, ainsi que des contaminants nouveaux et émergents, a été présentée. Alors que la demande en eaux souterraines continue d'augmenter, il est impératif de considérer non seulement leur qualité, mais aussi la gestion durable de leur quantité. Pour cela, il est crucial de connaître la recharge spatio-temporelle des eaux souterraines d'un bassin versant et les sources d'eau dominantes qui contrôlent la dynamique des eaux de surface et des eaux souterraines. Dans de nombreuses régions, la recharge des eaux souterraines reste difficile à quantifier, que ce soit en raison de la complexité des processus hydrogéologiques ou de données d'observation limitées. Composantes maillées à partir de données de télédétection et de données au sol facilement disponibles, y compris les précipitations, l'évapotranspiration réelle et les données de décharge hydrologique (séparées en débit rapide et débit de base), ont été utilisés pour générer des cartes spatio-temporelles de recharge des eaux souterraines sur une période de 20 ans (2000 - 2019). Les résultats de la grille d'estimation de la recharge sont en accord avec les estimations d'autres études, et dans l'ensemble, la recharge représente 29% des précipitations totales dans le bassin versant de la Thur. Les résultats ont mis en évidence l'importance des précipitations pour la recharge des eaux souterraines, les périodes prolongées de sécheresse ayant un effet négatif, tandis que les périodes de précipitations supérieures à la moyenne ont un effet tampon sur les ressources. L'eau des rivières représente une connexion entre l'environnement de surface et de subsurface. Entre 2017 et 2020, l'eau de la rivière Thur a été collectée lors d'événements extrêmes (haut et bas débit), et analysée pour son contenu en traceurs conservateurs (δ18O et δ2H). Ces eaux de surface échantillonnées lors d'événements ont été analysées conjointement avec des échantillons d'eaux souterraines et d'eaux de pluie pour caractériser la dynamique spatio-temporelle de l'eau dans le bassin versant de la Thur. En utilisant une analyse de « clustering » et une EMMA (« End-Member Mixing Analysis »), la variabilité spatio-temporelle des différentes sources d'eau contribuant aux aquifères du bassin versant de la Thur a été identifiée. La variabilité des sources d'eau des aquifères s’est avérée dépendre à la fois de l’altitude et de la géologie, avec différentes sources d'eau dominant différentes régions du bassin versant de la Thur. Un type d'eau de surface s'est avéré être une source dominante dans les régions de haute altitude, tandis qu'un type d'eau souterraine dominait les régions d'élévation moyenne, et un mélange d'eau de pluie et d'eau souterraine les régions de basse élévation. Un changement clair vers des signatures d'eau souterraine a été observé dans l'eau de rivière échantillonnée pendant des conditions d'événement sec, avec l'eau souterraine constituant une moyenne globale de 30% de l'eau de surface échantillonnée. Ce projet de recherche a mis en évidence les principaux contaminants qui proviennent des activités anthropiques, ainsi que la complexité des processus physiques sous-jacents et des facteurs qui régissent la qualité des eaux souterraines, notamment le climat, la géologie, la topographie et l'utilisation des terres. Des études de cas ont souligné les incertitudes persistantes concernant les processus de dégradation des contaminants, les voies de contamination et les risques de contamination subséquents des eaux souterraines. En ce qui concerne la quantité d'eau souterraine, cette étude a démontré la valeur des données de télédétection dans l'estimation de la recharge spatio-temporelle d'un bassin versant à méso-échelle, en particulier lorsque les données d'observation sont limitées, mais a également souligné l'importance des réseaux de surveillance continue au sol. Enfin, les investigations ont démontré que les échantillons basés sur les événements permettent de fournir un aperçu relativement peu coûteux des caractéristiques des eaux de surface et souterraines d'un bassin versant à méso-échelle. ABSTRACT Awareness concerning sustainable groundwater management is gaining traction and calls for adequate understanding of the complexities of natural and anthropogenic processes and how they affect groundwater quality and availability. This research project aimed to investigate different qualitative impacts on groundwater, and provide assessment methodologies that can be employed to ensure sustainable quantitative groundwater use. The study site, situated in north-eastern Switzerland, included groundwater systems located in minor and major alluvial deposits associated both with high elevation and plains regions. The Thur River catchment presents a study area that is both well investigated and of a large enough size (~1700 km2) to be considered a mesoscale catchment. Specific objectives of this research project included 1) the determination of the major controls on groundwater contamination, 2) the assessment of the spatiotemporal variability of groundwater recharge, in a manner applicable to other catchments, and 3) the monitoring of groundwater in an adaptive and event-based manner. These research objectives were addressed by first reviewing historic and current qualitative threats to groundwater concerning anthropogenic processes and how they affect groundwater quality globally. Secondly, the spatiotemporal groundwater recharge in the mesoscaled Thur catchment was estimated, based on open-source data and software. Finally, variabilities of source water contributions to aquifers located in the Thur catchment were determined using environmental tracer data from sampled sites. The structure of this dissertation spans three different scales ranging from global, to mesoscale, and to localized sampling, and covers subsequent different levels of data availability. In order to illustrate the many qualitative threats to groundwater resources, some of the key contaminants originating from anthropogenic activities, namely agricultural, urban, and industrial, were presented in the form of a review. Furthermore, a selection of case studies describing the continued concerns of both established, as well as new and emerging contaminants were presented. As demands on groundwater continue to increase, in addition to groundwater quality, it is also imperative to consider the sustainable management of groundwater quantity. For this, knowledge concerning a catchment’s spatiotemporal groundwater recharge, and the dominant water sources controlling surface-groundwater dynamics, is vital. In many regions however, groundwater recharge remains challenging to quantify, whether due to hydrogeological process complexities or limited observation data. Gridded components from readily available remotely sensed and ground-based data, including precipitation, actual evapotranspiration, and hydrological discharge data (separated into quick- and baseflow), were used to generate spatiotemporal groundwater recharge maps over a 20-year period (2000 - 2019) using open source software. Results from the gridded groundwater recharge estimates agreed well with estimates from other studies, and overall, recharge was shown to account for 29% of total precipitation in the Thur catchment. Results highlighted the importance of precipitation to groundwater recharge, with prolonged periods of drought having a negative effect on groundwater recharge, while periods of above average rainfall had a buffering effect on the Thur catchment’s groundwater resources. River water represents a connection between the surface and sub-surface environment. Between 2017 and 2020, Thur River water was collected during extreme events (high- and low flow), and analysed for its conservative tracer (δ18O and δ2H) content. These event-sampled surface waters were analysed in conjunction with groundwater and rainwater samples to characterize the spatiotemporal water dynamics in the Thur catchment. Using a cluster and three end-member mixing analysis, the spatiotemporal variability of different source water components contributing to the Thur catchment’s aquifers were identified. Source water variabilities of aquifers were found to be dependent on both elevation and geology, with different water sources dominating different regions of the Thur catchment. A surface water-type was found to be a dominant source in the high elevation regions, while a groundwater-type dominated the middle elevation regions, and a rainwater-groundwater mix the low elevation regions. A clear shift towards groundwater signatures during dry event conditions was observed in the event-sampled river water, with groundwater making up an overall average of 30% of the surface water sampled in the Thur catchment. This research project highlighted key contaminants that originate from anthropogenic activities, as well as the complexities involved in understanding the underlying physical processes and factors governing groundwater quality, including climate, geological settings, topography, and land use. Pertinent case studies emphasized persistent uncertainties concerning contaminant degradation processes, contaminant pathways, and subsequent contamination risks to groundwater quality. Where groundwater quantity is concerned, this study demonstrated the value of remotely sensed data in estimating the spatiotemporal recharge of a mesoscale catchment, in particular where observation data is limited, but also emphasised the importance of continued ground-based monitoring networks. Finally, investigations demonstrated the variability of river and groundwater source components in the Thur catchment, where event-based samples provided a relatively inexpensive insight into the surface-groundwater characteristics of a mesoscale catchment. ZUSAMMENFASSUNG Das Bewusstsein für eine nachhaltige Grundwasserbewirtschaftung nimmt zu und erfordert ein angemessenes Verständnis der komplexen natürlichen und anthropogenen Prozesse und deren Auswirkungen auf die Grundwasserqualität und -verfügbarkeit. Ziel dieses Forschungsprojekts war es zu untersuchen, wie sich verschiedenen Einflüsse auf die Grundwasserströmungssysteme auswirken und welche Bewirtschaftungsstrategien eingesetzt werden können, um eine nachhaltige qualitative und quantitative Grundwassernutzung zu gewährleisten. Das sich in der Nordostschweiz befindende Untersuchungsgebiet umfasst Grundwassersysteme, die sowohl in alpinen Lagen als auch in Auengebieten liegen. Das Einzugsgebiet der Thur stellt ein gut untersuchtes Studiengebiet dar und ist gross genug (~1700 km2), um als mesoskaliges Einzugsgebiet betrachtet zu werden. Spezifische Ziele dieses Forschungsprojekts waren 1) die Bestimmung der wichtigsten Einflussfaktoren auf die Grundwasserverschmutzung, 2) die Bewertung der räumlich-zeitlichen Variabilität der Grundwasserneubildung in einer Weise, die auf andere Einzugsgebiete übertragbar ist, und 3) die Überwachung des Grundwassers in einer adaptiven und ereignisbasierten Weise. Diese Forschungsziele wurden angegangen, indem zunächst historische und aktuelle qualitative Bedrohungen des Grundwassers in Bezug auf anthropogene Prozesse und deren Auswirkungen auf die Grundwasserqualität weltweit untersucht wurden. Zweitens wurde die räumlich und zeitliche Grundwasserneubildung im Einzugsgebiet der Thur auf der Grundlage von Open-Source-Daten und -Software abgeschätzt. Schliesslich wurden die variierenden Quellwasserbeiträge zu den Grundwasserleitern im Thur-Einzugsgebiet mit Hilfe von konservativen Tracerdaten bestimmt. Die Struktur dieser Dissertation umspannt drei verschiedene Skalen, von der globalen über die Mesoskala bis hin zur lokalen Probenahme, und deckt anschliessend verschiedene Ebenen der Datenverfügbarkeit ab. Um die vielen qualitativen Bedrohungen für das Grundwasser zu veranschaulichen, wurden die wichtigsten, aus der Landwirtschaft, den Städten und der Industrie stammenden anthropogenen Verunreinigungen in Form eines Überblicks vorgestellt. Darüber hinaus wurde eine Auswahl von Fallstudien vorgestellt, die die anhaltenden Probleme sowohl mit etablierten als auch mit neuen und aufkommenden Schadstoffen beschreiben. Da die Anforderungen an das Grundwasser immer weiter steigen, ist neben der Grundwasserqualität auch eine nachhaltige Bewirtschaftung der Grundwassermenge zwingend erforderlich. Hierfür ist das Wissen über die räumliche und zeitliche Grundwasserneubildung eines Einzugsgebietes und die dominierenden Wasserquellen, die die Oberflächen-Grundwasser-Dynamik steuern, entscheidend. In vielen Regionen ist es jedoch schwierig, die Grundwasserneubildung zu quantifizieren, sei es aufgrund der Komplexität der hydrogeologischen Prozesse oder aufgrund begrenzter Beobachtungsdaten. Gerasterte Parameter aus frei verfügbaren Fernerkundungsdaten und in-situ Beobachtungen, einschliesslich Niederschlag, tatsächlicher Evapotranspiration und hydrologischen Abflussdaten (getrennt in Schnell- und Basisabfluss), wurden verwendet, um räumlich-zeitliche Grundwasserneubildungskarten über einen Zeitraum von 20 Jahren (2000 - 2019) zu erstellen. Die so abgeschätzten Werte der Grundwasserneubildung stimmen gut mit Schätzungen aus anderen Studien überein. Insgesamt wurde gezeigt, dass die Neubildung 29% des Gesamtniederschlags im Thur-Einzugsgebiet ausmacht. Die Ergebnisse unterstreichen die Bedeutung des Niederschlags für die Grundwasserneubildung, wobei sich längere Trockenperioden negativ auf die Grundwasserneubildung auswirken, während Perioden mit überdurchschnittlichen Niederschlägen eine puffernde Wirkung auf die Grundwasserressourcen des Thur-Einzugsgebiets haben. Flusswasser stellt eine Verbindung zwischen der Oberfläche und der unterirdischen Umwelt dar. Zwischen 2017 und 2020 wurde Thur-Flusswasser während extremer Ereignisse (Hoch- und Niedrigwasser) gesammelt und auf seinen Gehalt an konservativen Tracern (δ18O und δ2H) analysiert. Diese ereignisbezogen-entnommenen Oberflächenwässer wurden zusätzlich zu Grund- und Regenwasserproben analysiert, um die räumlich und zeitliche Wasserdynamik im Thur-Einzugsgebiet zu charakterisieren. Mit Hilfe einer Cluster- und Drei-Endglieder-Mischungsanalyse wurde die räumliche und zeitliche Variabilität der verschiedenen Wasserkomponenten identifiziert, welche zu den Grundwasserleitern des Thur-Einzugsgebietes beitragen. Welche Komponente dominiert, hängt grundsätzlich von der geographischen Lage im Einzugsgebiet, als auch der Höhenlage und der Geologie ab. Ein Oberflächenwasser-Typ wurde als dominante Komponente in den hochgelegenen Regionen gefunden, während ein Grundwasser-Typ in den Regionen mittlerer Höhe dominierte und ein Regenwasser-Grundwasser-Mix in den niedrig gelegenen Regionen. Eine klare Verschiebung hin zu Grundwasser-Signaturen während trockener Bedingungen wurde im Flusswasser beobachtet, wobei das Grundwasser im Durchschnitt 30% des beprobten Oberflächenwassers im Einzugsgebiet der Thur ausmachte. Dieses Forschungsprojekt beleuchtete nicht nur die wichtigsten anthropogenen Grundwasserschadstoffe, sondern auch die komplexen physikalischen Prozesse und Faktoren, welche die Grundwasserqualität bestimmen, einschliesslich Klima, geologische Eigenschaften, Topographie und Landnutzung. Einschlägige Fallstudien betonten die anhaltenden Unsicherheiten bezüglich der Abbauprozesse von Schadstoffen, Schadstoffpfaden und die daraus resultierenden Kontaminationsrisiken für das Grundwasser. In Bezug auf die Grundwassermenge zeigte diese Studie den Wert von Fernerkundungsdaten bei der Abschätzung der räumlich-zeitlichen Neubildung eines mesoskaligen Einzugsgebiets, insbesondere bei begrenzten Beobachtungsdaten, betonte aber auch die Wichtigkeit fortgesetzter bodengestützter Überwachungsnetzwerke. Schliesslich zeigten die Untersuchungen die Variabilität der Fluss- und Grundwasser-Komponenten im Thur-Einzugsgebiet, wo ereignisbasierte Beprobungen einen relativ kostengünstigen Einblick in die Oberflächen-Grundwasser-Charakteristika eines mesoskaligen Einzugsgebietes liefern konnten.

Pas de vignette d'image disponible
Publication
Accès libre

The role of flow regimes for sediment transport and flooding potential of river catchments

2016, Basso, Stefano, Schirmer, Mario, Hunkeler, Daniel

Le régime d'écoulement de la rivière est le principal moteur de plusieurs processus qui se produisent dans des environnements fluviaux. Ces processus sont importants pour la gestion durable des ressources en eau. Le régime d'écoulement détermine aussi la sensibilité de la distribution du flux lui-même à une variation climatique, et affecte les comportements des bassins versants dans le cas de flux élevés. Pour cette raison, la compréhension des liens entre les processus hydrologiques et éco-morphologiques qui façonnent les environnements fluviaux est essentielle pour assurer la sécurité contre les risques d'inondation et la protection des services écosystémiques humains. Afin d'atteindre ces objectifs, il est proposé ici une étude quantitative sur les liens entre le régime d'écoulement et les métriques couramment utilisées en géomorphologie de la rivière et en ingénierie.
La variété de la décharge efficace pour le transport des sédiments observés dans différents bassins de rivière est ici liée à l'hétérogénéité sous-jacente des régimes d'écoulement. Les principaux éléments climatiques et du paysage responsables de la décharge effective sont identifiés grâce à un cadre analytique, qui relie le rapport effectif (i.e. le rapport entre le flux efficace et flux moyen) à l’exposant empirique des courbes de notation des sédiments et à la variabilité des flux. L’analyse montre que différentes dynamiques intrinsèques aux flux erratiques et aux flux persistants (caractérisées par la variabilité élevée et faible du flux) provoquent l'émergence de différentes ratios effectifs, avec des valeurs plus élevées associées à des régimes de flux erratiques. Le modèle prédit bien les rapports entre le ratio effectif et la variabilité des flux d'un ensemble de bassins des Etats-Unis continentaux, et peut appuyer l'estimation de la décharge effective dans des rivières qui appartiennent à différentes zones climatiques.
La capacité d’un modèle mécanique analytique des distributions des flux à capturer les propriétés des flux élevés est également étudiée. Le modèle se fonde sur une description stochastique de la dynamique de l'humidité du sol, et sur une réponse hydrologique simplifiée, décrite par des différentes relations de stockage-décharge. Les résultats montrent que des relations non-linéaires sont nécessaires pour la caractérisation correcte des fréquences des flux élevés et pour expliquer l'émergence de distributions a queue lourde du flux, ce qui est mécaniquement lié au degré de non-linéarité de la réponse hydrologique du bassin.
Enfin, une nouvelle expression analytique pour expliquer les courbes inondations-fréquence saisonnière est proposée. L'expression est dérivé d'un modèle stochastique de la dynamique quotidienne de décharge, dont les paramètres représentent les attributs du climat et de paysage du bassin et peuvent être estimés à partir des données quotidiennes des précipitations et des flux. Un seul paramètre, qui est lié à l’antécédent état d'humidité dans le bassin, nécessite une calibration sur les maxima observés. Les modèles sont appliqués dans deux rivières présentées en comparant les régimes quotidiens d'écoulement (erratique et persistante) pour montrer l’efficacité de la méthode, qui est capable de capturer différentes formes de courbes de fréquence d’inondation émergentes dans différents contextes climatiques. Le modèle fournit des bonnes estimations des flux maximaux saisonniers associées à un ensemble d'intervalles de récurrence, et les performances du modèle ne diminuent pas de manière significative pour des temps de retour plus longs que la taille de l'échantillon disponible. Ce résultat est dû à la structure du modèle, qui permet une exploitation efficace de l'information contenue dans l'ensemble des flux quotidiens des rivières. Par conséquent, l'approche peut être particulièrement utile dans les régions du monde pour lesquelles les données sont limitées., The river flow regime is the main driver of several processes occurring in riverine environments, which are relevant for the sustainable management of water resources. It also determines the sensitivity of the flow distribution itself to a changing climate, and possibly affects catchments' behaviors with respect to extreme flows. For this reason, understanding links among hydrologic and eco-morphological processes which shape riverine environments is pivotal to ensure safety against flood hazards and the protection of human-valued ecosystem services. In order to reach these goals, quantitative investigations on the links between the flow regime and commonly used metrics in river geomorphology and engineering were pursued in this study.
The variety of the effective discharge for sediment transport observed in different river catchments is here related to the underlying heterogeneity of flow regimes. The main climatic and landscape drivers of the effective discharge are identified through an analytic framework, which links the effective ratio (i.e. the ratio between effective discharge and mean streamflow) to the empirical exponent of the sediment rating curve and to the streamflow variability. The analysis shows that different streamflow dynamics intrinsic to erratic and persistent flow regimes (respectively characterized by high and low flow variability) cause the emergence of diverse effective ratios, with larger values associated to erratic regimes. The provided formulation predicts patterns of effective ratios versus streamflow variability observed in a set of catchments of the continental United States, and may support the estimate of effective discharge in rivers belonging to diverse climatic areas. The capability of a mechanistic analytical model of streamflow distributions to capture statistical features of high flows is also investigated. The model builds on a stochastic description of soil moisture dynamics and a simplified hydrologic response, described through different catchment-scale storage-discharge relations. The results show that non-linear relations are needed for a proper characterization of high flows frequencies and to explain the emergence of heavy-tailed streamflow distributions, which is mechanistically linked to the degree of non-linearity of the catchment hydrologic response.
Finally, a novel physically-based analytic expression of the seasonal flood-frequency curve is proposed. The expression is derived from a stochastic model of daily discharge dynamics, whose parameters embody climate and landscape attributes of the contributing catchment and can be estimated from daily rainfall and streamflow data. Only one parameter, which is related to the antecedent wetness condition in the watershed, requires calibration on the observed maxima. Applications in two rivers featured by contrasting daily flow regimes (erratic and persistent) are used to illustrate the potential of the method, which is able to capture diverse shapes of flood-frequency curves emerging in different climatic settings. The model provides reliable estimates of the seasonal maximum flows associated to a set of recurrence intervals, and its performances do not significantly decrease for return times longer than the available sample size. This result is due to the model structure, which allows for an efficient exploitation of the information contained in the entire range of daily flows experienced by rivers. Therefore, the proposed approach may be especially valuable in data scarce regions of the world.

Pas de vignette d'image disponible
Publication
Accès libre

Application of carbon-chlorine isotopic analysis to determine the origin and fate of chlorinated ethenes in groundwater

2015, Badin, Alice, Hunkeler, Daniel, Schirmer, Mario

Chlorinated ethenes are ubiquitous groundwater contaminants posing a threat to one of our main drinking water sources. Despite their spill history dating back to more than 40 years ago, these contaminants are still found in groundwater in numerous industrially developed countries due to their persistence, difficult characterisation in the subsurface and resulting challenging remediation. When adequate redox conditions, microbial communities and/or minerals are present, these compounds are known to undergo natural degradation. Applying natural attenuation as a management strategy is thus being increasingly considered as it constitutes a cost-effective environmental friendly approach. Tools enabling to differentiate degradation pathways, predict the fate of contaminants as well as understand the mechanisms underlying their degradation thus constitute the key to a better management of chlorinated ethenes contaminated sites. Methods allowing for contaminant source tracking are also of interest in a legal context where the contamination precursor is searched for. Among the various tools applied to address such questions, compound specific isotopic analysis (CSIA) – which consists in measuring the ratio between light and heavy stable isotopes of one element (i.e. isotopic composition) of a compound – is being increasingly applied.
This thesis was aimed at exploring the benefits and limits of applying CSIA to substantiate the origin and fate of chlorinated ethenes in groundwater. For this purpose, a first field study aimed at investigating the performance of dual Carbon-Chlorine (C-Cl) isotopic analysis for contaminant source discrimination was carried out. Laboratory experiments were then performed in view of getting more insight in the reaction mechanisms underlying tetrachloroethylene (PCE) reductive dechlorination and to explore the potential of dual C-Cl isotopic analysis to differentiate degradation pathways. A mathematical model was further developed to comprehensively simulate chlorinated ethenes C and Cl isotopic evolution during sequential dechlorination. Simulations were compared to experimental data in order to evaluate this model in its ability to reproduce and thus predict real data. Finally, the contribution of C and Cl isotopic analysis to identify changes in redox processes further affecting chlorinated ethenes in groundwater was challenged when assessing the effect of source thermal remediation by steam injection on a chlorinated ethenes plume.
For regulatory reasons, determining the contamination perpetrator is often of interest. As the isotopic signature of solvents produced from different manufacturers showed a large variability, CSIA was suggested as a method to discriminate the origin of contamination between different suspected sources by comparing their isotopic signatures. Such application however relies on the assumption that isotopic signatures will also differ in the field. Our first goal was thus to determine the source isotopic variability of PCE at a country scale. For this purpose, the C and Cl isotopic composition of PCE found in groundwater underlying 10 contaminated sites located in Switzerland was compared to the so far reported isotopic signatures of PCE produced by different manufacturers. It was shown that such variability was less important between the 10 sites than between PCE from different manufacturers (i.e. -26.0 to -23.7 ‰ for C and -0.5 to 0.6 ‰ for Cl in Switzerland and -37.4 to -23.2 ‰ for C and -4.4 to 1.2 ‰ for Cl in PCE from manufacturers). Additionally, some sites could be differentiated based on their isotopic signatures while others could not. The successful application of CSIA therefore largely depends on cases.
Once chlorinated ethenes have been detected in groundwater, it may be of interest to determine whether they are being naturally degraded or not, as this will influence the site management choice (e.g. application of monitored natural attenuation). Chlorinated ethenes are typically known to undergo sequential biotic reductive dechlorination in strictly anoxic conditions (i.e. PCE → trichloroethylene (TCE) → cis-dichloroethylene (cDCE) → vinyl chloride (VC) → ethene). However, the exact reaction mechanism underlying each step of reductive dechlorination remains at the stage of hypothesis where three different reaction mechanisms have so far been proposed.
As molecules containing light isotopes are generally degraded faster than molecules containing heavy isotopes due to energetic reasons, the isotopic composition of chlorinated ethenes is bound to vary during their sequential degradation. CSIA has thus naturally been proposed as a tool to track the biochemical reactions affecting chlorinated ethenes during their degradation as different processes differently affect their isotopic composition. More specifically, rate-limiting steps control the extent of isotopic enrichment during the course of biotransformation. Rate-limiting steps occurring during substrate-enzyme interactions are yet expected to equally affect both elements since such interactions are not bond-specific contrary to the purely chemical degradation reaction which involves a bond breakage. It was hence suggested that simultaneously considering the isotopic composition of two elements of a compound undergoing degradation via the dual C-Cl isotope slope associated with this compound strictly reflected the chemical reaction underlying this compound degradation contrary to single element isotopic data.
In view of getting more insight into the reaction mechanisms underlying reductive dechlorination of chlorinated ethenes, we studied the C and Cl isotopic evolution of PCE and TCE during their reductive dechlorination by two bacterial consortia (SL2-PCEc and SL2-PCEb) harbouring members of Sulfurospirillum spp. These consortia were specific in that they showed a different dechlorination pattern: SL2-PCEb was able to dechlorinate PCE or TCE until cDCE whereas SL2-PCEc only dechlorinated until TCE. Contrary to what was expected, two significantly different dual C-Cl isotope slopes of 2.7 ± 0.3 and 0.7 ± 0.2 associated with PCE reductive dechlorination were determined depending on the bacterial consortia. Such variability was attributed to the existence of two different reaction mechanisms underlying this reaction, under the assumption that dual C-Cl isotope slopes strictly reflect the chemical reaction. Two dual C-Cl isotope slopes associated with PCE reductive dechlorination in two field sites where each slope corresponded to one experimentally determined slope were also determined. This further supported the existence of two unique slopes and constituted another argument in favour of their corresponding to two different reaction mechanisms. It was moreover demonstrated that phylogenetically close bacteria could yield different C-Cl isotope slopes. The apparent kinetic isotope effect (AKIE) reflects the difference in reaction rates involving molecules containing light versus heavy isotopes of one element after correcting for non-reacting positions. Primary isotopic effects affect atoms located in reacting position as opposed to secondary isotopic effects which affect atoms located in non-reacting positions. Based on AKIEs calculations where secondary Cl isotopic effects were neglected, we furthermore suggested that one consortium (SL2-PCEc) more likely involved an electron-transfer or nucleophilic substitution as a first step of reaction mechanism than a nucleophilic addition. Comparing calculated AKIEs to the maximum theoretical kinetic isotope effects (or “semiclassical Streitwieser limits”) associated with C-Cl bond breakage suggested that either the primary Cl isotope effect was larger than the kinetic isotope effect given by the Streitwieser limit, or that a secondary Cl isotope effect occurred.
The Cl isotopic composition of TCE produced by PCE reductive dechlorination was further studied in order to explore in more details the possibility that secondary Cl isotope effects occur. A 1.4 ± 0.2 ‰ to 3.1 ± 0.6 ‰ lighter TCE than PCE at the beginning of the reaction indicated the presence of an inverse secondary effect or at least a difference of -10.6 ± 1 ‰ to -15.9 ± 2.8 ‰ between primary and secondary Cl isotopic effects.
In order reliably predict a chlorinated ethenes plume fate based on a modelling approach considering isotopic data, isotopic effects should be incorporated in a more comprehensive way than in the models so far proposed. A mathematical model aimed at simulating the evolution of C and Cl isotopic composition during sequential reductive dechlorination was thus developed where secondary isotopic effects were taken into account. So that the model reflects effectively occurring processes, Monod kinetics instead of first order kinetics were additionally considered. The rationale behind the approach consisted in considering all isotopocules (i.e. molecules differing in number and position of heavy and light isotopes) of each chlorinated ethene as individual species which were each degraded at different speed depending on the number and position of heavy and light isotopes in the isotopocule. Such difference in degradation rate between isotopocules was described by a matrix containing kinetic isotopocule fractionation factors. The definition of the latter is similar to that of the commonly used kinetic fractionation factor α which corresponds to the ratio between the degradation rate of heavy and light isotopes of a compound. More specifically, one comprehensive model (GM) considering C and Cl isotopes simultaneously was distinguished from a simplified model (SM) where C and Cl were considered separately. Both models almost identically simulated realistic C and Cl isotopic compositions of PCE, TCE and cDCE during sequential dechlorination when using experimentally plausible kinetic and isotopic parameters. They could additionally accurately reproduce our experimental data, leaving a promising future for the development of an integrative reactive transport model incorporating isotopic parameters. It also documented the slight impact of having different Cl secondary isotopic effects as well as the small effect induced by an unequal Cl isotopes distribution between positions of an asymmetric molecule on the produced compound Cl isotopic composition.
Finally, field investigations were performed at a site located in Denmark which was explored in a previous work, prior to source thermal remediation. C and Cl isotopic analysis of chlorinated ethenes from groundwater samples taken along the plume centreline were used to verify and improve the interpretation of redox and chlorinated ethenes concentration data. Dual C-Cl isotope slopes associated with PCE and TCE in the first part of the plume were similar to experimentally determined slopes during biotic reductive dechlorination. Based on the assumption that dual C-Cl isotope slopes directly reflect degradation pathways, it was suggested that steam injection enhanced PCE and TCE biotic reductive dechlorination in the first part of the plume. This was in agreement with the occurrence of more reducing conditions resulting from the release of organic matter likely triggered by the thermal remediation. On the other hand, we suggested based on the dual isotope slope approach that cDCE was probably primarily abiotically degraded by pyrite in the downstream part of the plume before and after the remediation event. This differed from the original postulation which suggested the occurrence of either cDCE anaerobic oxidation or complete reductive dechlorination prior to remediation. Such different conclusion could be drawn based on newly reported dual isotope slopes associated with cDCE abiotic degradation which were not available at the time of the study preceding source remediation. In the middle of the plume, a cDCE C isotopic composition lighter than the estimated initial one for PCE C documented the occurrence of further cDCE degradation despite the very low VC concentrations. On the contrary, a cDCE C isotopic composition equal to that of the initially released PCE indicated the absence of or only little further cDCE degradation at the plume front. Such conclusion was in agreement with the observed plume expansion documented by larger concentration contours in the second campaign than in the first.
To sum up, this thesis reveals that dual C-Cl isotopic analysis should be applied with caution for pathway and source differentiation in the field. It yet demonstrates that such analysis constitutes a valuable complementary tool to explore biochemical processes affecting chlorinated ethenes in groundwater, provided that it is applied at sites where the hydrogeological and biogeochemical contexts are well characterised. The performed studies additionally put more light on C and Cl isotopic effects occurring during PCE and TCE biotic reductive dechlorination even though the specific kinetic processes controlling isotopic behaviours remain unclear. Finally, this work proposes a mathematical model which opens the door to a better incorporation of isotope data when evaluating a plume fate based on a modelling approach.

Pas de vignette d'image disponible
Publication
Accès libre

Investigation of groundwater-surface water interactions with distributed temperature sensing (DTS)

2014, Kurth, Anne-Marie, Schirmer, Mario, Hunkeler, Daniel

Les interactions entre les eaux souterraines et les eaux de surface sont vitales pour les écosystèmes aquatiques car elles influencent sur la température de l’eau, la disponibilité en nutriments et en oxygène dissous et sur la qualité de l'eau dans la zone hyporhéique. Un déficit dans ces interactions pourrait conduire à la détérioration de la santé et du fonctionnement de ces écosystèmes. Entre 1997 et 2008, des recherches ont montré que 22 % des cours d’eau suisses se trouvent dans un état critique écomorphologique (artificielles ou couvertes par exemple). En conséquence, la restauration des rivières est devenue une obligation légale, stipulant la revitalisation de 4000 kilomètres de cours d’eaux et de rivières endommagés sur une période de 80 ans. Dans le cadre de cette thèse, les données sur la revitalisation des cours d’eaux suisses ont été recueillies pour 13 des 26 cantons suisses, pour une période allant de 1979 à 2012. Les résultats ont montré que la longueur totale restaurée a augmenté constamment depuis 1979, avecune longueur moyenne de revitalisation de 9.8 km par an. L’analyse des mesures de revitalisation utilisées a montré des tendances géographiques. Dans la Romandie, des combinaisons des mesures de revitalisation plus durables ont été favorisées, par exemple des méthodes de bio-ingénierie et d’amélioration de la qualité de l’eau. En revanche, les cantons de la Suisse centrale et orientale, préfèrent une seule mesure de restauration avec un degré élevé d’intervention mécanique. En général, les contrôles d’efficacité des restaurations n’ont été réalisés dans moins de 10 % des projets de revitalisation étudiés. La plupart de ces contrôles concerne seulement le nombre des espèces indicatrices, comme les truites. Le rétablissement des interactions entre les eaux souterraines et les eaux de surface n’a été analysé dans aucun des projets. Dans ce contexte, la présente thèse a pour objectif d’analyser l’influence des mesures de revitalisation sur les interactions entre les eaux souterraines et les eaux de surface. Il existe un grand nombre de techniques d’analyse des interactions entre les eaux souterraines et les eaux de surface, parmi lesquels les méthodes des mesures géochimiques, hydrogéologiques et physiques. Dans la présente étude, une combinaison de ces approches est utilisée, avec une attention particulière à la température de l’eau. Cette dernière est examinée par Distributed Temperature Sensing (DTS). La méthode standard DTS utilisée jusqu’à présent permet seulement d’étudier les interactions de l’eau souterraine avec les eaux de surface dans des ruisseaux exfiltrants. Afin d’étudier les effets de la revitalisation des cours d’eaux sur les interactions de l’eau souterraine avec les eaux de surface, une méthode applicable dans des conditions exfiltrantes et infiltrantes pour tout taille de cours d’eau est nécessaire. En conséquence, une nouvelle méthode de mesure a été développée dans cette thèse. Cette méthode dite PAB combine des éléments des méthodes DTS passives (P) et actives (A) existantes avec l’enterrement du câble à fibre optique sous le lit de la rivière. Cette méthode permet des investigations à long terme des interactions de l’eau souterraine avec les eaux de surface dans les cours d’eau exfiltrants et infiltrants de toute dimension. Toutefois, une personne doit être présente pour contrôler le chauffage du câble à fibre optique pendant la mesure DTS active. . Pour contourner cette limitation et permettre l’application à long terme de la méthode PAB dans les régions éloignées, un système DTS autonome (ADTSS) a été développé. Ce dernier cumule plusieurs avantages dont la commande à distance, le transfert automatique des données et le chauffage automatique du câble à fibre optique. Avec l’aide de l’ADTSS et la méthode PAB, les effets de la revitalisation des cours d’eaux sur les interactions entre les eaux souterraines et les eaux de surface ont été analysés pour un cours d’eau urbain. Les résultats indiquent que la construction d’îlots de graviers augmente l’infiltration de l’eau de surface dans le lit du cours d’eau. Sur la base de ces recherches, on peut conclure que certaines modifications de la morphologie des rivières ont un effet positif sur les interactions entre les eaux souterraines et les eaux de surface. Ainsi, la revitalisation des cours d’eau peut être une méthode efficace pour améliorer les interactions de l’eau souterraine avec les eaux de surface., Groundwater-surface water interactions are a vital necessity for aquatic ecosystems as they control the water temperature, the availability of nutrients, dissolved oxygen and the water quality in the hyporheic zone. A lack of groundwater-surface water interactions may result in the deterioration of ecosystem health and functioning. Studies between 1997 and 2008 have shown that 22 % of Swiss water courses were severely degraded, e.g. engineered or covered. As a consequence, river restoration was made a legal obligation, stipulating the restoration of 4000 km of degraded rivers and streams over the course of the next 80 years. For this thesis a review of Swiss river restoration data between 1979 and 2012 for 13 of the 26 Swiss cantons was performed. Results indicated that restoration activities had steadily increased since 1979, with an average restoration rate of 9.8 km/year. An analysis of the restoration techniques revealed interesting geographical trends. In western Switzerland, more sustainable combinations of restoration measures, such as bioengineering or water quality improvements, were favoured. Cantons in central and eastern Switzerland, on the other hand, preferred single restoration measures with a higher degree of mechanical intervention. In general, the evaluation of restoration effects was only reported for less than 10 % of all investigated restoration projects. These mainly focussed on the number of flagship species, such as trout. None of the investigated projects tested whether river restoration had re-established groundwater-surface water interactions. Hence, this thesis aims at investigating the effects of river restorations on groundwater-surface water interactions. A number of techniques are commonly used to investigate groundwater-surface water interactions, including geochemical, hydrogeological and physical approaches. In the present study a combination of approaches is employed, with the main focus being on the physical parameter of water temperature. The latter is investigated with Distributed Temperature Sensing (DTS). DTS is used to measure temperature differences between ground- and surface water in surface water bodies. So far, the existing DTS methods have enabled the investigation of groundwater-surface water interactions under gaining conditions in small brooks. In order to investigate the effect of river restoration on groundwater-surface water interactions, however, a method applicable in both gaining and losing conditions, and which is suitable for water courses of all sizes is required. For this purpose, a new methodology, the PAB approach, has been developed, which combines passive (P) and active (A) DTS methods with the burying (B) of the fibre-optic cable in the subsurface. This approach enables long-term distributed investigations of groundwater-surface water interactions under gaining and losing conditions in water courses of all sizes. The active DTS method in the PAB approach, however, requires the direct presence of an operator controlling the heating of the fibre-optic cable. In order to circumvent this limitation and enable long-term temperature measurements with the PAB approach in remote areas, an autonomous DTS system (ADTS system) has been developed. This system combines several advantages, such as remote control, automated data transfer, and automated heating. By aid of the ADTS system and the PAB approach, the effect of river restoration on groundwater-surface water interactions has been investigated in an urban stream. Results indicate that the installation of gravel islands increased the rate of surface water downwelling. Generalising the results, it may be assumed that such changes to river morphology will have a positive effect on the rate of groundwater-surface water interactions. Therefore, river restoration may be successful in enhancing groundwater-surface water interactions. Concerning the newly-developed DTS method and measurement system, it could be shown that the combination of the ADTS system and the PAB approach is a powerful tool for the investigation of groundwater-surface water interactions. In future river restoration projects, this tool should be employed for evaluating its success in re-establishing groundwater-surface water interactions., Grundwasser-Oberflächenwasser-Interaktionen sind eine notwendige Voraussetzung für gesunde aquatische Ökosysteme, da diese die Verfügbarkeit von Nährstoffen und gelöstem Sauerstoff, aber auch die Wassertemperatur und –qualität in der hyporheischen Zone beeinflussen. Ein Fehlen dieses Austauschs kann Zustand und Funktion solcher Ökosysteme stark beeinträchtigen. Zwischen 1997 und 2008 durchgeführte Untersuchungen haben gezeigt, dass sich in der Schweiz bis zu 22 % der Fliessgewässer in einem ökomorphologisch schlechten Zustand befinden und z.B. künstlich oder eingedolt sind. Als Folgerung dieser Ergebnisse wurde die Revitalisierung von 4000 Flusskilometer über einen Zeitraum von 80 Jahren gesetzlich vorgeschrieben. Für die vorliegende Doktorarbeit wurden Daten von Schweizer Flussrevitalisierungen, welche zwischen 1979 und 2012 durchgeführt wurden, erhoben und ausgewertet. Die Ergebnisse der Erhebung, bei der 13 der 26 Schweizer Kantone teilnahmen, zeigten, dass die Gesamtlänge revitalisierter Fliessgewässer seit 1979 stetig zugenommen hat. Dabei lag die mittlere Revitalisierungslänge bei 9.8 km pro Jahr. Bezüglich der eingesetzten Revitalisierungsmassnahmen zeigten sich geographische Trends. In der West-Schweiz wurden eher auf Nachhaltigkeit ausgerichtete Kombinationen von Revitalisierungsmassnahmen favorisiert, wie z.B. biologischen Verfahrenstechniken und Massnahmen zur Verbesserung der Wasserqualität. Kantone der Zentral- und Ost-Schweiz hingegen bevorzugten einzelne bauliche Massnahmen, wie beispielsweise das Ausbaggern und Neugestalten des Flussbetts. Bei den Erfolgskontrollen ergaben sich keine geografischen Trends. Generell wurden diese nur bei 10 % aller untersuchten Revitalisierungsprojekte durchgeführt, wobei sich diese häufig nur auf die Anzahl von Leitarten, wie z.B. Forellen, konzentrierten. Grundwasser-Oberflächen-Interaktionen wurden in keinem der vorliegenden Projekte untersucht. Vor diesem Hintergrund wurde im Rahmen dieser Doktorarbeit untersucht, wie sich Flussrevitalisierungen auf den Austausch zwischen Grund- und Oberflächenwasser auswirken. Für die Untersuchung von Grundwasser-Oberflächenwasser-Interaktionen sind diverse geochemische, hydrogeologische oder physikalische Messmethoden verfügbar und wurden in dieser Arbeit verwendet. Das Hauptaugenmerk richtet sich hierbei auf die Wassertemperatur, welche mit Distributed Temperature Sensing (DTS) untersucht wurde. DTS misst hierbei die Wassertemperatur in Fliessgewässern, wobei es sich die Temperaturunterschiede zwischen Grund- und Oberflächenwasser zu Nutze macht. Bisherige DTS-Standardverfahren ermöglichen ausschliesslich die Untersuchung von Grundwasser-Oberflächen-Interaktionen in effluenten (Grundwasser gewinnenden) Bächen. Untersuchungen in grösseren oder in influenten(Wasser abgebenden) Fliessgewässern sind nicht möglich. Um jedoch die Auswirkungen der Flussrevitalisierung auf die Grundwasser-Oberflächenwasser-Interaktionen untersuchen zu können, dürfen keine Beschränkungen bezüglich der hydrologischen Situation oder der Grösse des Fliessgewässers bestehen. Daher wurde im Rahmen dieser Doktorarbeit eine neue Messmethode entwickelt. Diese sogenannte PAB-Methode vereint Elemente der bestehenden passiven (P) und aktiven (A) DTS-Methoden mit der Verlegung eines Glasfaserkabels in das Flussbett (buried, B). Damit werden langfristige Untersuchungen der Grundwasser-Oberflächenwasser-Interaktionen in influenten sowie effluenten Fliessgewässern aller Dimensionen ermöglicht. Für die aktiven DTS-Messungen wird jedoch eine Person zur Bedienung der Glasfaser-Heizung benötigt. Dies erschwert die langfristige Anwendung der PAB-Methode in abgelegenen Gebieten. Um diese Limitierung zu umgehen wurde ein autonomes DTS-Messsystem (ADTS) entwickelt. Letzteres ist ferngesteuert, beheizt das Glasfaserkabel vollautomatisch und sendet seine Daten regelmässig an einen Online-Datenspeicher. Auf diese Weise können die Grundwasser-Oberflächenwasser-Interaktionen auch in abgelegenen Gebieten längerfristig untersucht werden. Mit Hilfe des ADTS Systems und der PAB-Methode wurden die Auswirkungen der Flussrevitalisierung auf die Grundwasser-Oberflächenwasser-Interaktionen exemplarisch in einem revitalisierten urbanen Fliessgewässer untersucht. Die Ergebnisse dieser Studie weisen darauf hin, dass die Errichtung von Kiesinseln das Eindringen von Oberflächenwasser in den Untergrund verstärkt hat. Basierend auf diesen Untersuchungen lässt sich schliessen, dass bestimmte Veränderungen der Flussmorphologie, wie z.B. das Einbringen von Kiesinseln, die Grundwasser-Oberflächenwasser-Interaktionen erhöhen können. Somit können Flussrevitalisierungen eine wirksame Methode zur Verstärkung der Grundwasser-Oberflächenwasser-Interaktionen darstellen. In Bezug auf die entwickelten DTS Methode und DTS Messsystem konnte gezeigt werden, dass die Kombination der PAB-Methode mit dem ADTS System sehr gut geeignet sind, um Grundwasser-Oberflächenwasser-Interaktionen in Fliessgewässern zu untersuchen. Daher sollte die Kombination der PAB-Methode mit dem ADTS System bei der Erfolgskontrolle zukünftiger Revitalisierungsprojekte Berücksichtigung finden.

Pas de vignette d'image disponible
Publication
Accès libre

Data assimilation and non-Gaussian parameter inference for hydrogeological models

2020, Ramgraber, Maximilian, Schirmer, Mario

Pas de vignette d'image disponible
Publication
Accès libre

Model complexity and diagnostic-tool based analyses of integrated and physically based models

2016, Ghasemizade, Mehdi, Schirmer, Mario

The proper management of water resources nowadays is a critical issue. In that sense, accurate measurement of water balance components is a prerequisite for the proper management of water resources since one cannot manage what one cannot measure. Due to the difficulty in direct measurements of some of the water balance components such as deep percolation, simulation models are applied. Recent increases in computational power have motivated the application of more complex models of coupled environmental processes. These models, however, require outnumbered parameters, which lead to the problem of over-parameterization, meaning that many different parameter sets can lead to identical fits to the observed data. Therefore, this study explores the application of integrated and physically-based model HydroGeoSphere (HGS) in the framework of a weighing lysimeter in north-east of Switzerland to pursue: I) comparing the performance of different levels of complexity (in terms of the number of parameters) for simulating daily water balance components (actual evapotranspiration, water content, and lysimeter discharge) where three model concepts were introduced; II) addressing the output uncertainty of each concept at different time scales; III) application of a global and temporal sensitivity analysis as a diagnostic tool to address how individual parameters of the model as well as their interactions can affect the output uncertainty; VI) using a time-varying identifiability analysis method to investigate when the maximum amount of information about model parameters can be derived, considering the available data. The results of the study indicated that the most complex concept outperformed the other simpler concepts in reproducing the daily water balance components based on the performance metrics of R2 and RMSE. However, the ideal required level of complexity, when considered in terms of output uncertainty, was shown to be dependent on the time scales of the simulated outputs. Exploring the results of the sensitivity analysis revealed that the individual effects of model parameters as well as their interaction effects on model outputs are required to be analyzed simultaneously to allow for the reduction in output uncertainty. The identifiability analysis indicated that identifiability is a necessary but not sufficient condition for a parameter to allow for reduction in the model output uncertainty. Overall our research indicated that, based on the available data at the lysimeter scale, complex and integrated models, such as HGS, are attractive solutions to reproduce complex features of the system but they have the severe difficulties of parametrization, leading to their reduced predictive capabilities.

Pas de vignette d'image disponible
Publication
Accès libre

Groundwater dynamics and streamflow generation in a mountainous headwater catchment: process understanding from field experiments and modeling studies/

2015, Freyberg, Jana von, Schirmer, Mario, Hunkeler, Daniel

Groundwater systems in mountainous headwater catchments significantly sustain downstream freshwater bodies and therefore play an important role in the regional water cycle. Complex interactions between atmospheric, subsurface and ecological variables occur that determine groundwater quantity and quality as well as streamflow-generation mechanisms at different spatiotemporal scales. An integrated understanding of the hydro(geo)logic processes in such areas is a necessary precursor to develop successful adaption methods in the face of climate change. For this, not only does our mechanistic understanding of groundwater flow in mountainous headwater catchments has to be improved, but also the complex land-atmosphere interactions with groundwater have to be understood. Although there exists a wide breadth of studies on hydrology in mountainous regions, research on groundwater dynamics in these settings still is comparably rare.
In order to close that research gap, an extensive field- and modeling study was carried out within this PhD project. Hydro-climatic data from a dense observation network in the Swiss pre-Alpine upper Rietholzbach Research Catchment (URHB, ~1km2) were used, where the major variables of the water cycle are continuously monitored at high temporal and spatial resolution. Scientifically significant results have been achieved in the four areas covered by this project, which refer to the first-order-controls of groundwater recharge (i.e., climatic forcing and landscape properties) and to the hydrologic responses driven by groundwater discharge (i.e., streamflow generation and solute transport). In the first project phase, six well-established groundwater recharge estimation techniques were evaluated systematically. From the inconsistencies among the applied GR estimation methods first-order controls of GR were identified that helped to better understand GR mechanisms. With the focus on groundwater discharge, a more detailed analysis of groundwater dynamics at the event-time scale was pursued in the second part of this thesis to identify dominant streamflow-generating mechanisms and threshold-responses. It was found that groundwater discharge from the shallow aquifer in the valley bottom of the URHB represents the dominant fraction of peak flow during most rainfall periods. The conceptual description of the hydro(geo)logic system in the URHB was evaluated in the third part of this thesis with an analytical model that consists of two linear reservoirs for event-flow generation and a baseflow storage with relatively constant discharge rates. Here, rainfall-driven event flow is generated in the riparian zones and the adjacent hillslopes, while baseflow was assumed to originate from the deep fractured-rock aquifer and to be rather constant. The model adequately reproduced the observed streamflow signal, however, the performance improved after implementation of the variable contributing area concept. Although the shrinking/expansion of the riparian zones was small compared to the total catchment area (up to 14 %), this process strongly controlled the streamflow hydrograph when wet antecedent moisture conditions coincide with high-intensity rainfall periods.
Overall, this PhD compiles various a practical approaches to analyze and characterize groundwater systems and streamflow-generation mechanisms in mountainous headwater catchments. By focusing on the two first-order controls on groundwater recharge, climate and subsurface properties, an important foundation for future research is provided that deals with potential negative effects of climate change and land use on water quality and quantity in mountainous headwater catchments.

Pas de vignette d'image disponible
Publication
Accès libre

Geogenic arsenic in groundwater of Burkina Faso

2018, Bretzler, Anja Maria, Schirmer, Mario

Dans les régions sahéliennes semi-arides d’Afrique de l’Ouest, l’eau souterraine des aquifères fracturés permet de satisfaire les besoins en eau potable des populations rurales. Au nord du Burkina Faso, des études récentes ont montré que l’eau de certains forages contient de l’arsenic (As) à des concentrations supérieures à la norme de 10 μg/L définie par l’Organisation Mondiale de la Santé (OMS) et également adoptée par le Burkina Faso. Cet arsenic serait d’origine géogénique (c’est-à-dire naturelle) et trouverait en particulier sa source dans des sulfures présents dans les gisements de minerais. L’arsenic a un fort potentiel cancérigène: une exposition à long-terme, même à de faibles concentrations, augmente le risque de cancers des organes internes (poumons, vessie, reins), ainsi que d’autres effets néfastes pour la santé.
Au Burkina Faso et plus généralement en Afrique de l’Ouest, les données sur la présence d’arsenic géogénique sont extrêmement rares, contrairement à d’autres régions telles que l’Asie ou l’Amérique du Sud, où de nombreuses études ont été effectuées sur ce sujet. Cependant, avant d’évaluer les risques pour la santé humaine et de développer des solutions à grande échelle, il est nécessaire de déterminer les sources, la dynamique et l’ampleur de la contamination des eaux souterraines à l’arsenic. Cette thèse a pour but de répondre à ces questions en étudiant: 1. quelles sont les régions du Burkina Faso où le risque de contamination des eaux souterraines à l’arsenic est élevé; 2. comment la concentration en arsenic est influencée par des paramètres temporels tels que le temps de résidence des eaux souterraines et la saisonnalité; 3. la faisabilité des technologies de traitement basées sur l’élimination de l’arsenic par oxydation du fer à valence zéro, simples et peu coûteuses.
Une base de données compilant 1’498 mesures d’échantillons d’eau, anciennes et nouvelles, provenant de forages de diverses régions du Burkina Faso montre que dans 15% des forages, la concentration en arsenic est supérieure à 10 μg/L. Ces données ont été utilisées comme points de calibration, et les cartes géologiques et minières existantes comme variables indépendantes d’une régression logistique multivariée. Cette modélisation a permis la création de cartes de prédiction de la présence d’arsenic dans les eaux souterraines. Les meilleurs prédicteurs d’une haute concentration d’arsenic dans l’eau souterraine sont les schistes et les roches volcaniques de la formation birimienne, qui ont subi une minéralisation importante, se développant ainsi en gisements de minerais de haute qualité. Les cartes de risques ainsi obtenues, couplées aux données sur la densité de population, nous permettent d’estimer qu’environ 560'000 personnes au Burkina Faso (soit 3% de la population) sont exposées au risque de consommer de l’eau pouvant contenir une concentration d’arsenic supérieure à 10 μg/L.
Les mesures réalisées ont montré une grande variabilité spatiale de la concentration en arsenic dans les eaux de forages. C’est la raison pour laquelle des recherches supplémentaires concernant les origines, les mécanismes de libération de l’arsenic et l’influence des systèmes hydrologiques ont été nécessaires. Une campagne d’échantillonnage hydrochimique et de traçage avec des gaz nobles (3H, 2H, 18O) a été réalisée dans une zone d’étude (~80 km2) au sud-ouest du pays. Ce tout premier jeu de données de gaz nobles dissous dans les aquifères en milieu fracturé dans le socle cristallin de l’Afrique occidentale a permis de montrer qu’à des profondeurs inférieures à 50 m, il existe des eaux souterraines ayant un temps de résidence supérieur à 1000 ans, correspondant à des rapports isotopiques d’hélium (3He/4He) d’environ 10-8. Cette découverte inattendue met en question la durabilité des ressources en eau souterraine dans un contexte d’augmentation rapide de la population. Les concentrations élevées en arsenic (> 10 μg/L) détectées dans les eaux souterraines où des conditions oxiques et de pH neutre prédominent ne sont liées à aucun autre paramètre hydrochimique mesuré ni au temps de résidence. Cela renforce l’hypothèse que la proximité de sulfures (Fe(As,S)2, FeAsS) dans les zones minéralisées est probablement le principal facteur influençant les concentrations en arsenic dans les eaux souterraines. Cependant, les mécanismes exacts engendrant la concentration excessive aqueuse d’arsenic sous ces conditions de E-pH ne sont pas encore bien connus et demandent davantage de recherche.
Lorsqu’il est impossible de s’approvisionner à une source d’eau non contaminée à l’arsenic, le traitement de l’eau est nécessaire. Un essai pilote sur le terrain avec des filtres à sables contenant des clous en fer comme source d’oxyde de fer pour l’adsorption et la co-précipitation de l’arsenic a été mené dans une zone rurale au nord du Burkina Faso où les concentrations en arsenic dans l’eau souterraine oscillaient entre 400 et 1350 μg/L. Parallèlement, des essais en colonnes au laboratoire ont révélé que l’air piégé dans la couche de clous peut drastiquement réduire le rendement d’élimination de l’arsenic dans les filtres, à cause de la diminution du temps de contact entre l’eau et les clous et des écoulements préférentiels. Grâce à une modification des filtres sur le terrain, une saturation en eau de la zone des clous a pu être obtenue et les rendements d’élimination de l’arsenic ont ainsi atteint 75 à 90%. Cependant, dans la majorité des cas, l’eau traitée gardait une concentration en arsenic supérieure à 50 μg/L, ce qui n’est pas conforme aux normes de potabilité de l’eau. Ces filtres peuvent donc s’avérer efficaces pour traiter l’arsenic lorsque les concentrations en entrée sont relativement basses (10 – 100 μg/L). Ils pourraient également être employés comme une solution d’urgence pour diminuer l’exposition totale à l’arsenic. Le remplacement des clous en fer par de l’hydroxyde ferrique granulaire (GEH) a permis d’obtenir une concentration en arsenic dans l’eau traitée systématiquement inférieure à 10 μg/L. La construction d’un filtre avec ce type de média adsorbant industriel est néanmoins limitée par son coût élevé et son manque de disponibilité sur le marché local, menaçant ainsi la durabilité et de viabilité financière à long terme de cette solution dans les pays à bas revenus.
La présente thèse a visé à caractériser la présence géogénique de l’arsenic dans les eaux souterraines du Burkina Faso et à mieux comprendre le fonctionnement des aquifères fracturés soumis à cette contamination. Les résultats obtenus sont utiles pour d’autres régions d’Afrique occidentale ayant des conditions géologiques et hydrogéologiques similaires à celles du Burkina Faso. Un demi-million de personnes sont à risque de consommer de l’eau contaminée à l’arsenic à une concentration supérieure à 10 μg/L : cette première estimation devrait inciter le lancement de nouveaux travaux de recherches scientifiques mais également encourager les acteurs de la santé, de l’approvisionnement en eau potable et du développement rural à s’impliquer pour la mise en œuvre de solutions de traitement. Vu les conséquences sociales et économiques liées à l’empoisonnement chronique par l’arsenic, réduire l’exposition à ce poison représente un investissement important dans la santé et la productivité des générations futures., In the semi-arid West African Sahel belt, rural populations often rely on groundwater from fractured aquifer systems for their drinking water needs. Recent evidence has shown that some tube wells in northern Burkina Faso are affected by arsenic (As) concentrations above the World Health Organisation’s (WHO) 10 μg/L guideline value. Arsenic is hypothesised to stem from geogenic (naturally occurring) sources, specifically sulphide minerals occurring in ore zones. Arsenic is a potent carcinogen and long-term exposure even to low concentrations can lead to greatly increased risks of developing cancers of the internal organs (lung, bladder, kidney), as well as a range of other serious adverse health effects.
Compared to the widely reported and intensely studied cases of geogenic As in Asia and Latin America, Burkina Faso and the greater West African region are noticeably data-scarce. However, before risks to human health can be assessed and mitigation measures initiated on a large scale, a comprehensive assessment of the origins, dynamics and magnitude of groundwater As contamination is necessary. This dissertation aims to contribute to these issues by investigating i) which regions in Burkina Faso are most at risk of As-contaminated groundwater, ii) whether temporal aspects such as groundwater residence time and seasonality influence As concentrations and iii) the suitability of low-cost, low-tech zero-valent iron-based technologies for As removal.
A comprehensive dataset encompassing both new and existing measurements of tube well As concentrations from different regions of Burkina Faso (n = 1498) revealed that 15% were above 10 ÎĽg/L. By using these measurements for calibration, as well as data extracted from readily available geological and mineral deposit maps as independent predictor variables, As prediction models were computed using multivariate logistic regression. The best predictors for high As were schists and volcanic rocks belonging to the Birimian formation, which has undergone considerable mineralisation resulting in high-class metal ore deposits. Combining the resulting hazard maps with population density data led to the estimation that ~560,000 people in Burkina Faso, roughly 3% of the population, are potentially exposed to As > 10 ÎĽg/L in their drinking water.
The high spatial variability in tube well As concentrations observed in the above-mentioned dataset highlighted the need for a more detailed investigation regarding As sources and release mechanisms, as well as the influence of the hydrological system on As concentrations. Hydrochemical and multi-tracer (noble gases, 3H, 2H, 18O) sampling was performed in a small study area (~80 km2) in South-Western Burkina Faso. This first dataset of dissolved noble gases in West African fractured crystalline bedrock aquifers gave the unexpected insight that groundwater bodies with residence times > 103 a can already be found at depths less than <50 m, as suggested by 3He/4He ratios of ~10-8. This finding questions the sustainability of future increasing groundwater extraction in light of a rapidly growing population. Elevated As concentrations > 10 ÎĽg/L, found in oxic groundwater of circum-neutral pH, were not correlated to any other analysed parameter, nor related to groundwater residence times. This corroborates the hypothesis that the proximity to sulphide minerals (Fe(As,S)2, FeAsS) in mineralised zones is likely the principal factor influencing As concentrations in groundwater. Nevertheless, the exact mechanisms controlling excess aqueous As concentrations under these pH/Eh conditions remain elusive and require further investigation.
Where switching to an uncontaminated water source is not feasible, water treatment to remove As is necessary. Sand filters with small iron nails as a Fe-oxide source for As sorption and co-precipitation were tested in remote rural households in northern Burkina Faso with groundwater As concentrations of 400 – 1350 μg/L. Laboratory column experiments revealed that entrapped air in the nail layer can severely lower As removal efficiency due to decreased water/nail contact time and preferential flow paths. Modification of the field filters to avoid these issues and ensure constant nail saturation resulted in As removal efficiencies of 75 – 90 %, but effluent As still remained mostly > 50 μg/L, therefore not adhering to drinking water guidelines. These filters may be suitable to remove As when input concentrations are lower (10 – 100 μg/L), or as an emergency measure to lower total As exposure. A household filter containing granular ferric hydroxide (GEH® consistently removed As to below 10 μg/L. Such commercial adsorbents however are expensive and not locally available, leading to challenges of affordability and long-term financial sustainability in these low-income settings.
This dissertation has exposed the widespread occurrence of geogenic As in groundwater of Burkina Faso and advanced understanding of As-affected fractured aquifer systems. These results are relevant to the greater West African region, where similar geological and hydrogeological conditions occur. A first estimation of more than half a million people exposed to As > 10 μg/L in Burkina Faso alone should spur the initiation of further scientific research, as well as mitigation activities involving stakeholders from the health, water supply and rural development sectors. Considering the social and economic burden induced by As-related mortality, reducing As exposure is an investment in future generation’s health and productivity.

Pas de vignette d'image disponible
Publication
Accès libre

Effect of river restoration and hydrological changes on surface water quality: river reach-scale to catchment-scale study

2015, Chittoor Viswanathan, Vidhya, Schirmer, Mario, Hunkeler, Daniel

La restauration des rivières est considérée comme méthode permettant d'agir sur la protection contre les crues, la reconstruction d'habitats naturels et l'amélioration de la qualité des eaux de surface. En général, les projets de restauration visent à atteindre plus d'un des objectifs précités du fait de leur connexité. L'effet de la restauration d'une rivière sur la qualité de l'eau reste relativement peu étudié. La première partie de cette thèse est vouée à l'analyse de différents cas d'études de restauration de rivière réalisés dans plusieurs pays. Nous sélectionnons et analysons des cas d'études pour lesquels la qualité de l'eau était le principal objectif visé par la restauration, pour quatre pays sur trois continents. Ces cas d'études montrent que pour atteindre un objectif de bonne qualité de l'eau au sein des rivières restaurées, il est souvent nécessaire de combiner aux mesures de restauration une amélioration (ou une installation) des infrastructures (tels que les stations d'épuration et bassins d'orage). Dans l'ensemble des études de restauration, le suivi post-restauration n'est pas souvent mené du fait d'un manque de fonds pour mener un suivi pre-restauration d'une part et d'un manque de protocole et d'indicateurs bien définis pour le contrôle de la qualité de l'eau d'autre part. L'un des buts principaux de cette thèse est de définir un jeu de paramètres afin d'offrir des indicateurs clés de la qualité de l'eau pour le suivi pre et post restauration. Dans la seconde partie de cette thèse, un suivi à haute fréquence d'un grand nombre de paramètres a été réalisé afin d'identifier les paramètres clés et les processus bio-géochimiques qui affectent leurs cycles diurne au cours de trois saisons. Le fonctionnement de l'écosystème en rivière et la théorie selon laquelle la capacité d'assimilation des nutriments des rivières est étudié et testée pour plusieurs conditions hydrologiques.
Nous montrons que les cycles diurnes du pH et de l'oxygène dissout (DO) sont dépendants des processus biologiques, principalement la photosynthèse et la respiration, en rivière. Pendant la période de basses eaux, en automne, nous avons observé une réduction du carbone organique dissous (DOC), pendant la nuit, et des nitrates, juste avant le lever du jour, à l'aval des biefs restaurés. Ceci est attribué à des processus biologiques supposés être accentués par une augmentation de la diversité des habitats post-restauration. Par ailleurs, suite à un évènement orageux d'été, nous avons pu observer une augmentation des nitrates et une accumulation du chlore à l'exutoire du bassin versant suivi par une dilution retardée comparée aux effets de dilution immédiats observés quant à eux le long du reste de la rivière. Cet évènement orageux a aussi causé une diminution du DOC par dilution le long de toute la rivière. L'observation de la diminution de la variabilité diurne du DO dans les parties chenalisées de la rivière pendant l'évènement orageux est un indicateur d'une augmentation du taux de renouvellement de la turbidité qui affecte le modèle de production-respiration - mais qui n'affecte pas la variabilité diurne de la partie restaurée. Un plus long bief restauré et un suivi pre-restauration sont recommandés pour les projets futurs. Dans la dernière partie de cette thèse, nous employons une démarche à l'échelle du bassin versant afin d'identifier les chemins de transferts des solutés. La méthode simplifiée intitulée "Integrated Spatial Snap-shot Method" (ISSM) ou Méthode d'Aperçu Spatialement Intégrée, implique l'identification d'un nombre réduit (<25) de stations de suivi à des points critiques du bassin versant et l'analyse des flux de deux modes d'écoulements contrastés, pour deux saisons extrèmes. Au travers de l'utilisation combinée des isotopes stables de l'eau et des nitrates complétée par la concentration des solutés et de leurs flux, nous identifions des hotspots de qualité des eaux de surface et les changements saisonniers associés. Cette méthode simplifiée est transposable à différents types de bassin versant situés dans différents contextes géographiques et a pour but d'offrir une étude préliminaire à l'échelle du bassin versant afin d'identifier les sites de restauration adéquats pour de grands bassins versants., River restoration is considered as an alternative flood protection measure, to restore the native habitat in the rivers and to improve water quality. Often the restoration projects aim to achieve more than one of the objectives mentioned above as the goals are often interlinked. The effect of river restoration on water quality is seldom studied. The analysis of case studies of restoration projects from different countries forms the first part of this thesis. The case studies where water quality was the main driver for restoration were analyzed from four countries across three continents. The studies show that often a combination of restoration measures in tandem with infrastructure (like waste water treatment plant, storm sewer) up gradation or new installations need to be carried out to achieve good water quality status of the rivers. In many restoration studies, post-restoration monitoring is often not carried out due to lack of funds for carrying pre-restoration monitoring and lack of a definite protocol of indicators to be analyzed. This is an integral aim of the thesis, to define a set of parameters that could act as key water quality indicators for pre-post restoration monitoring. In the second section of this thesis, high- frequency monitoring of several parameters was done to identify key parameters and the bio-geochemical processes affecting their diurnal cycles in three different seasons. The ecosystem functioning in rivers and the theory that restoration accentuates the nutrient assimilation capacity in rivers is tested in different hydrological conditions. It was found that, the diurnal cycles of pH and DO were driven by in-stream biological processes, mainly photosynthesis and respiration. During low flow in autumn a reduction of DOC (in nighttime) and nitrate (in pre-dawn period) was observed downstream of the restored section, which is attributed to biological processes that are expected to be accentuated by increased habitat diversity post-restoration. A storm event in summer, resulted in increased nitrate and chloride accumulation at the outlet of the catchment followed by a delayed dilution, in comparison to the immediate dilution effect observed along the rest of the river stretch. This storm event also caused a reduction of dissolved organic carbon (DOC) by dilution along the entire observed river stretch. The observed reduction in the diurnal variability of dissolved oxygen (DO) in the channelized parts of the river during the storm event is an indication of higher turbidity turnover affecting the production-respiration pattern - but this does not affect the diurnal variability in the restored section. A longer restored stretch together with pre-restoration monitoring are recommended for future projects. In the final part of the thesis, a catchment-scale perspective to identify the pathways of various solutes in the catchment is presented. The simplified method - Integrated Spatial Snap-shot method (ISSM), involves the identification of few (<25) monitoring stations at critical points in the catchment and the analysis of fluxes at two contrasting discharge patterns in two extreme seasons. By using a combination of water and nitrate isotopes together with the concentration of solutes and their fluxes, hotspots of surface water quality and the associated seasonal changes were identified. This method is transferrable to different catchments under different geographical conditions and is aimed to act as a preliminary catchment-scale study to identify suitable restoration sites in large catchments., Die Revitalisierung von Flüssen ist eine Alternative zum herkömmlichen Hochwasserschutz. Zugleich können damit natürliche Habitate im Fluss wiederhergestellt und die Wasserqualität verbessert werden. Häufig streben Revitalisierungsprojekte mehrere der zuvor genannten Ziele an, da diese oft eng miteinander verknüpft sind. Die Auswirkungen der Flussrevitalisierung auf die Wasserqualität werden dabei jedoch eher selten untersucht.
Im ersten Teil dieser Doktorarbeit werden verschiedene Revitalisierungsprojekte, welche prioritär eine Verbesserung der Wasserqualität anstrebten, untersucht. Dabei werden Projekte aus vier Ländern dreier Kontinente berücksichtigt. Die Auswertung verdeutlicht, dass Revitalisierungsmassnahmen alleine nicht ausreichen, um die Wasserqualität zu verbessern. Zusätzliche Aufwertungen der Infrastruktur, wie beispielsweise durch Kläranlagen oder Kanalisationen, sind hierbei notwendig, um eine gute Wasserqualität zu erreichen. Häufig ist es aufgrund fehlender Kontrollen, welche vor Beginn bzw. nach Beendigung der Revitalisierung, durchgeführt werden, unmöglich festzustellen, ob das Projekt eine Verbesserung der Wasserqualität bewirkt hat. Die mangelnden Kontrollen sind, zum einen, auf ein streng limitiertes Budget, zum anderen, auf unzureichende Vorgaben bezüglich notwendiger Vor- und Nachuntersuchungen zurückzuführen. Ein wichtiges Anliegen dieser Doktorarbeit ist daher die Identifikation von chemischen Parametern, welche als Indikator der Wasserqualität dienen können. Durch Vorgabe dieser Indikatoren sollen Vor- und Nachuntersuchungen stark vereinfacht und kosteneffizienter gestaltet werden. Anhand von Vergleichsstudien an einem Feldstandort in der Nordost-Schweiz werden im zweiten Teil dieser Doktorarbeit chemische Indikatoren identifiziert. Zusätzlich werden die Auswirkungen bio-geochemische Prozesse auf die täglichen Schwankungen der zuvor genannten chemischen Indikatoren untersucht. Daten wurden hierbei während dreier verschiedener Jahreszeiten über einen Zeitraum von ca. zwei Jahren erhoben und ausgewertet. Hierbei liegt das Augenmerk der Datenauswertung auf der Funktionsfähigkeit der Flussökosysteme. Des Weiteren wird anhand verschiedener hydrogeologischer Szenarien untersucht, inwiefern Flussrevitalisierungen die Verfügbarkeit von Nährstoffen verbessern. Die Daten verdeutlichen, dass tägliche Schwankungen im pH-Wert und der Konzentration gelösten Sauerstoffs auf biologische Prozesse, d.h. Photosynthese und Respiration, zurückzuführen sind. Bei Daten der Probennahmen im Herbst zeigen sich im unterstromigen Bereich des revitalisierten Abschnittes am Feldstandort nachts und im Morgengrauen jeweils niedrigere Konzentrationen gelösten organischen Kohlenstoffs und Nitrat. Es wird vermutet, dass dies durch eine höhere biologische Aktivität, welche nach Flussrevitalisierungen erwartet wird, bedingt ist. Ein anderes Bild zeigt sich während eines Starkregenereignisses im Sommer. Hier werden am Abstrom des Einzugsgebietes erhöhte Konzentrationen an Nitrat und Chlorid gemessen. Dabei wird hier eine verzögerte Verdünnung der Konzentrationen beobachtet, die sich stark von der sofortigen Konzentrationsverringerung in den anderen Messstationen unterscheidet. Das Starkregenereignis führt zu einer Reduktion der Konzentrationen an gelöstem organischen Kohlenstoff im gesamten Untersuchungsbereich des Flusses. Weiter zeigt sich eine Veränderung in den täglichen Schwankungen des gelösten Sauerstoffs, jedoch ausschliesslich im kanalisierten, nicht revitalisierten, Bereich des Flusses. Diese Verringerung der täglichen Schwankungen im gelösten Sauerstoff ist auf die hohe Trübung zurückzuführen, welche die biologische Aktivität, z.B. die Respiration, beeinträchtigt.
Für zukünftige Forschungsprojekte wäre es empfehlenswert bereits vor der Revitalisierung detaillierte Untersuchungen der Wasserchemie durchzuführen. Zusätzlich wäre es hilfreich für die Untersuchungen nach der Revitalisierung über einen möglichst langen revitalisierten Abschnitt zu verfügen.
Im letzten Teil dieser Doktorarbeit wird ein Vorgehen vorgeschlagen, mit welchem innerhalb eines Einzugsgebietes die Fliesspfade verschiedener gelöster Stoffe nachvollzogen werden können. Hierbei werden mit der neu entwickelten ISSM-Methode („Integrated Spatial Snap-shot“) im Einzugsgebiet eine geringe Anzahl repräsentativer Knotenpunkte für die Untersuchung der gelösten Stoffe identifiziert. Anhand dieser werden dann die Stoffflüsse bei unterschiedlichen Abflussszenarien und zu unterschiedlichen Jahreszeiten untersucht. Diese Methode wurde an verschiedenen Feldstandorten angewandt. So wurden Hotspots chemischer Indikatorspezies und deren jahreszeitlichen Schwankungen anhand der Konzentrationen gelöster Stoffe und deren Durchflussmenge sowie der Wasserstoff-/Sauerstoff- und Stickstoff-Isotopenverteilung untersucht. Es zeigt sich, dass sich diese Methode auf Einzugsgebiete mit unterschiedlichsten Topographien übertragen lässt. Auf diese Weise lassen sich in ersten Voruntersuchungen potentielle Standorte für Flussrevitalisierungen auch innerhalb grosser Einzugsgebiete identifizieren.

Pas de vignette d'image disponible
Publication
Accès libre

Analytical modeling of reach-scale and network-scale dynamics of flow regimes

2015, Doulatyari, Behnam, Schirmer, Mario, Hunkeler, Daniel

Sustainable management of river networks is an important topic in hydrology today. Rivers and streams are a significant source of drinking water, as well as energy production and other human valued services. Spatial and temporal patterns of flow regimes have a significant impact on ecological and anthropogenic uses of fresh water within entire river basins. Developing tools for management of streamflows hinges on a deep understanding of the hydrologic form and function at the basin scale, and the interplay between the key driving processes. This study is centered on providing a process-based description of flow regimes and their spatial variability, with the purpose of developing tools for catchment-scale management of streamflows and studying ecologically relevant processes. Simple methods that allow a spatially explicit characterization of flow regimes with limited data and calibration requirements are extremely valuable for efficient management of water resources in data scars regions.
In order to meet these research goals, a modeling method was developed in this thesis for the prediction of streamflow regimes, based solely on catchment-scale climatic and morphological features. The method was tested in eleven test catchment distributed evenly in the United States, east of the rocky mountains. Considering the minimal data requirements (rainfall, potential evapotranspiration and digital elevation maps), the method was capable of capturing the patterns of observed streamflows reasonably well in all cases. This method was then expanded and applied point-wise along the river network of a test basin in north eastern Switzerland. A custom geo-database and a Web GIS platform were created for the management of data and model application. Predicted values of relevant flow statistics were validated at six subcatchment outlets, where discharge data was available, with satisfactory results. Strong seasonal signature of rainfall was identified as the dominant driving force of flow regimes. The seasonal variability of the streamflows showed a complex pattern, influenced by climatic gradients and by the increasing variability of hydrologic response observed at larger scales. The modeling method and data management framework presented here offer a novel and robust approach for assessing the spatial patterns of streamflows based on limited information.
The spatial and temporal variability of river flows bear important influence on ecological processes at the reach and basin scales. In this thesis, the effect of streamflow dynamics on riparian vegetation growth was studied using a lumped stochastic framework which explicitly incorporates the randomness of exposure and submersion periods implied by the streamflow variability, and links such a randomness to climatic and landscape properties. The framework was applied to the terminal reach of two catchments characterized by contrasting flow regimes. The results illustrated the role of vegetation specific traits and water availability as limiting factors, and flow regime variability as the driver for patterns of riparian vegetation biomass along the river reach.