Voici les éléments 1 - 2 sur 2
  • Publication
    Métadonnées seulement
    Transport behaviour and natural attenuation of organic contaminants at spill sites
    (2004) ;
    Butler, Barbara J
    Organic contaminants pose a significant threat to groundwater resources. These contaminants are often released as nonaqueous phase liquids (NAPLs) during spills of, for example, gasoline, crude oil, creosote, coal tar or chlorinated solvents. Once released, the liquids seep downward and dissolve into the groundwater. In many cases, the impacted groundwater contains a mixture of contaminants, either due to the complexity of the NAPL (e.g., gasoline) or due to co-disposal/co-spillage (e.g., landfill leachates). Many organic contaminants are hazardous to human health and the environment and therefore threaten our potable water resources and natural ecosystems. Active remediation of contaminated groundwater is often very expensive so that cost-effective alternatives have to be found. If natural attenuation is intended to be used as a means of achieving specific remedial objectives at a contaminated site, it will require a sound understanding of the ongoing processes as well as careful control and monitoring ("monitored natural attenuation" (MNA)). Therefore, a major goal of remediation research today is to develop methods to predict the mass fate of multiple organic compounds in heterogeneous aquifers under natural conditions. (C) 2004 Elsevier Ireland Ltd. All rights reserved.
  • Publication
    Métadonnées seulement
    A relative-least-squares technique to determine unique Monod kinetic parameters of BTEX compounds using batch experiments
    (1999) ;
    Butler, Barbara J
    ;
    Roy, James W
    ;
    Frind, Emil O
    ;
    Barker, James F
    An analysis of aerobic m-xylene biodegradation kinetics was performed on the results of laboratory batch microcosms. A modified version of the computer model BIO3D was used to determine the Monod kinetic parameters, k(max) (maximum utilization rate) and K-S (half-utilization constant), as well as the Haldane inhibition concentration, K-I, for pristine Borden aquifer material, The proposed method allows for substrate degradation under microbial growth conditions. The problem of non-uniqueness of the calculated parameters was overcome by using several different initial substrate concentrations. With a relative-least-squares technique, unique kinetic degradation parameters were obtained. Calculation of the microbial yield, Y, based on microbial counts from the beginning and the end of the experiments was crucial for reducing the number of unknowns in the system and therefore for the accurate determination of the kinetic degradation parameters, The kinetic parameters obtained in the present study were found to agree well with values reported in the literature. (C) 1999 Elsevier Science B.V. All rights reserved.