Voici les éléments 1 - 10 sur 18
  • Publication
    Métadonnées seulement
    Percolation and Particle Transport in the Unsaturated Zone of a Karst Aquifer
    Recharge and contamination of karst aquifers often occur via the unsaturated zone, but the functioning of this zone has not yet been fully understood. Therefore, irrigation and tracer experiments, along with monitoring of rainfall events, were used to examine water percolation and the transport of solutes, particles, and fecal bacteria between the land surface and a water outlet into a shallow cave. Monitored parameters included discharge, electrical conductivity, temperature, organic carbon, turbidity, particle-size distribution (PSD), fecal indicator bacteria, chloride, bromide, and uranine. Percolation following rainfall or irrigation can be subdivided into a lag phase (no response at the outlet), a piston-flow phase (release of epikarst storage water by pressure transfer), and a mixed-flow phase (increasing contribution of freshly infiltrated water), starting between 20 min and a few hours after the start of recharge event. Concerning particle and bacteria transport, results demonstrate that (1) a first turbidity signal occurs during increasing discharge due to remobilization of particles from fractures (pulse-through turbidity); (2) a second turbidity signal is caused by direct particle transfer from the soil (flow-through turbidity), often accompanied by high levels of fecal indicator bacteria, up to 17,000 Escherichia coli/100 mL; and (3) PSD allows differentiation between the two types of turbidity. A relative increase of fine particles (0.9 to 1.5 mu m) coincides with microbial contamination. These findings help quantify water storage and percolation in the epikarst and better understand contaminant transport and attenuation. The use of PSD as "early-warning parameter" for microbial contamination in karst water is confirmed.
  • Publication
    Métadonnées seulement
    Karst groundwater protection: First application of a Pan-European Approach to vulnerability, hazard and risk mapping in the Sierra de Libar (Southern Spain)
    (2006)
    Andreo, Bartolomé
    ;
    Goldscheider, Nico
    ;
    Vadillo, Iñaki
    ;
    Vias, Jesús María
    ;
    Neukum, Christoph
    ;
    Sinreich, Michael
    ;
    Jimenez, Pablo
    ;
    Brechenmacher, Julia
    ;
    Carrasco, Francisco
    ;
    Hotzl, Heinz
    ;
    Perles, María Jesús
    ;
    The European COST action 620 proposed a comprehensive approach to karst groundwater protection, comprising methods of intrinsic and specific vulnerability mapping, validation of vulnerability maps, hazard and risk mapping. This paper presents the first application of all components of this Pan-European Approach to the Sierra de Libar, a karst hydrogeology system in Andalusia, Spain. The intrinsic vulnerability maps take into account the hydrogeological characteristics of the area but are independent from specific contaminant properties. Two specific vulnerability maps were prepared for faecal coliforrns and BTEX These maps take into account the specific properties of these two groups of contaminants and their interaction with the karst hydrogeological system. The vulnerability assessment was validated by means of tracing tests, hydrological, hydrochemical and isotope methods. The hazard map shows the localization of potential contamination sources resulting from human activities, and evaluates those according to their dangerousness. The risk of groundwater contamination depends on the hazards and the vulnerability of the aquifer system. The risk map for the Sierra de Libar was thus created by overlaying the hazard and vulnerability maps. (C) 2005 Elsevier B.V. All rights reserved.
  • Publication
    Métadonnées seulement
    A deterministic approach to the coupled analysis of karst springs' hydrographs and chemographs
    (2003)
    Grasso, D Alessandro
    ;
    ;
    During the chemically based recession flow phase of karstic springs the carbonate (dissolved limestone) concentration can be expressed as negative power of the flow rate. The empirically determined Conc/Q relationship allows two parameters (alpha and A) to be defined, of which one (alpha) depends on the geometric dimensions of the saturated (submerged) karstic network. In this paper we present a deterministic model which simulates the concentration of carbonate at the outlet of a network of circular rectilinear conduits as a function of flow rate. This model, based on hydraulic principles and the calcite dissolution kinetics, allows the sensitivity of the alpha and A parameters to be studied under different chemical, physical and geometric scenarios. Simulation results show that A is a function of the calcite saturation concentration, whereas alpha depends on the spatial dimensions of the karstic network (void length and aperture). The deterministic model results were applied to real karstic systems to evaluate the geometric dimensions of submerged karstic networks. (C) 2002 Elsevier Science B.V. All rights reserved.
  • Publication
    Métadonnées seulement
    Epikarst storage in a karst aquifer: a conceptual model based on isotopic data, Milandre test site, Switzerland
    (2003)
    Perrin, Jérôme
    ;
    ;
    The Milandre test site is a karst aquifer characterized by diffuse infiltration, a well developed conduit network, and several tributaries feeding an underground river. Field data include discharge rate measurements, stable isotopes, weekly rainfall and spring-water isotope sampling, and detailed isotope sampling during three flood events. Flood sampling was carried out at several tributaries corresponding to conduit flow, vadose flow and seepage flow. Weekly sampling showed a strong buffering of the rainfall isotopic signal at the spring. This attenuation suggests an important mixing reservoir in the system. Flood events showed highly peaking hydraulic responses but buffered rain isotope responses. These results indicate that the soil and epikarst sub-systems have an important storage capacity. A conceptual model of flow and transport in the soil and epikarst zone is proposed: Soil plays an important role in mixing due to the presence of capillary water storage. Consequently dampened concentrations reach the epikarst despite a rapid hydraulic response. The epikarst acts as the storage element and distributes water as either a base flow component or a quick flow component. When recharge exceeds a given threshold, excess infiltrated water bypasses the soil and epikarst and reaches the saturated zone as fresh flow. Based on this model, the significance of phreatic storage is thought to be limited, at least in Milandre test site. Hence the saturated zone is seen mainly as a transmissive zone through its well developed conduit network. (C) 2003 Elsevier B.V. All rights reserved.
  • Publication
    Métadonnées seulement
    Vulnerability mapping in karst areas and its uses in Switzerland
    (2000)
    Tripet, Jean-Pierre
    ;
    Doerfliger, Nathalie
    ;
    ;
    Delporte, Cyril
  • Publication
    Métadonnées seulement