Voici les éléments 1 - 4 sur 4
  • Publication
    Accès libre
    Hydrogeological characterization of karst aquifers in Switzerland using a pragmatic approach
    (2018)
    Malard, Arnauld
    ;
    Des études récentes révèlent que les aquifères karstiques représentent une part importante des réserves en eau souterraine de la Suisse (120 km3) et des ressources renouvelables (8,4 km3/an), bien qu'ils ne s'étendent que sur 20% du territoire. D'une part, les taux d'infiltration élevés et les grandes perméabilités des roches karstifiées rendent les aquifères karstiques très intéressants pour la gestion de l'eau. D'autre part, les systèmes d'écoulement karstiques sont caractérisés par une structure très hétérogène à composantes d’écoulement rapides et lentes (réseau de conduits, stockage phréatique et épikarst) qui conduisent à d'importantes variations hydrodynamiques et à des dynamiques d'écoulement complexes qui ne peuvent être résolues à l'aide d'outils hydrogéologiques standard. Enfin, les aquifères karstiques sont également très vulnérables à la contamination et nécessitent une attention particulière pour leur protection. Par conséquent, malgré des ressources en eaux souterraines intéressantes, les aquifères karstiques sont souvent ignorés, la dynamique de l'écoulement est mal connue et la gestion des eaux souterraines est loin d'être optimale.
    C'est pour ces raisons que l'ISSKA a décidé de présenter le projet Swisskarst dans le cadre du Programme National Suisse de Recherche 61 consacré à la gestion durable de l'eau en Suisse (janvier 2010 - décembre 2013). La motivation du projet Swisskarst était de développer une approche conceptuelle 3D (KARSYS) pour améliorer la caractérisation hydrogéologique des aquifères karstiques. Cette thèse est directement liée au projet Swisskarst et à l'approche KARSYS.
    Tout au long du projet, la forme existante de l'approche KARSYS a été testée sur différents sites en Suisse et à l'étranger afin (i) de tester l'applicabilité sur des sites réels, (ii) de formaliser les étapes méthodologiques et (iii) d'améliorer les opérations standards. Par rapport à la forme initiale de KARSYS (telle que publiée en 2013), des procédures semi-automatisées ont été développées pour générer un réseau de conduits et pour délimiter les bassins d’alimentation en surface. Les applications de KARSYS à de nombreuses études de cas ont montré que l'approche se révèle extrêmement efficace pour documenter les aquifères karstiques épigéniques où les processus karstiques sont en équilibre avec le niveau de base hydrologique, où les contrastes des lithologies permettent d'identifier les roches karstifiées à partir de roches non karstifiées et où les zones phréatiques sont d'extension modérée ou compartimentées en plusieurs unités distinctes. En ce qui concerne les aquifères purement confinés ou lorsque les contrastes lithologiques rendent difficile la distinction entre les roches karstifiées et les roches non karstifiées, l’approche KARSYS reste applicable mais moins performante. Les principales limites à l'applicabilité de KARSYS concernent la précision des données géologiques et des indications hydrologiques concernant les sources karstiques (activité, débit moyen, etc.).
    Comme KARSYS est une approche conceptuelle, des approches numériques de simulation ont été développées en tant qu'extensions. Deux types de modèles de simulation ont été conçus pour la recharge des eaux souterraines : l'un pour les régions alpines où la recharge est dominée par les contrastes de relief, la fonte des neiges et des glaciers et l'autre pour les régions basses où la recharge est dominée par la végétation et les processus sol/épikarst. Les applications de ces modèles permettent de distinguer toutes les composantes des processus de recharge (précipitations, RET, etc., à l'exception de la condensation) dans les différents compartiments des aquifères (stockage dans les sols, épikarst, volumes faiblement perméables, etc.). En plus de ces modèles de recharge, un modèle hydraulique de simulation des débits dans le réseau de conduits a été développé. Ce modèle utilise le réseau de conduits généré et la recharge simulée comme entrées pour reproduire la décharge à chaque exutoire du système d'écoulement. Les applications de ces modèles en interaction constante avec le modèle conceptuel 3D permettent de déduire des propriétés supplémentaires des systèmes d'écoulement (conduits perchés, seuils, etc.). Ces modèles peuvent maintenant aborder diverses questions relatives à l'hydrologie karstique (stockage, impacts de la construction, risques d'inondation, etc.).
    Une autre extension a été développée sous la forme de lignes directrices pour la cartographie de l'information hydrogéologique résultant de l'application de KARSYS. Ces lignes directrices favorisent trois types de cartes hydrogéologiques karstiques selon l'échelle et les enjeux : la carte des eaux souterraines karstiques, la carte des aquifères karstiques et la carte du système d'écoulement karstique.
    Enfin, ce projet a également été l'occasion d'aborder des questions générales sur les eaux souterraines des aquifères karstiques à l'échelle suisse : la recharge annuelle, le stockage minimal à faible débit et le stockage saisonnier et l'évolution attendue des ressources en eaux souterraines avec les changements climatiques. Ces travaux ont permis de fournir des aperçus, des valeurs clés ou des recommandations concernant la dynamique actuelle des eaux souterraines et leur évolution prévue dans les décennies à venir. Ils contribueront à appuyer les décisions concernant les stratégies futures de gestion des eaux souterraines karstiques.
    Les approches et extensions développées dans cette thèse contribuent à améliorer les connaissances sur les aquifères karstiques dans la perspective d’une gestion durable des ressources., Recent studies reveal that karst aquifers represent a significant part of the Swiss groundwater reserve (120 km3) and resource (8.4 km3/year), although they only extend over 20% of the territory. On the one hand, high infiltration rates and large permeabilities of karstified rocks make karst aquifers highly interesting for water management. On the other hand, karst groundwater flow-systems are characterized by a highly heterogeneous structure including quick- and slow-flow components (conduit network, phreatic and epikarst storage) which lead to important hydrodynamic variabilities and complex flow dynamics which cannot be solved by the mean of standard hydrogeological tools. Finally, karst aquifers are also highly vulnerable to contamination and require specific attention for protection. Consequently, in spite of interesting groundwater resources, karst aquifers are often disregarded, flow-dynamics are poorly known and groundwater management is far from being optimal.
    These are the reasons which motivated SISKA to submit the Swisskarst project as part of the Swiss National Research Program 61 dedicated to sustainable water management in Switzerland (Jan. 2010 – Dec. 2013). The motivation of the Swisskarst project was to develop a 3D conceptualization approach (KARSYS) for improving the hydrogeological characterization of karst aquifers. This dissertation is directly related to the Swisskarst project and to the KARSYS approach.
    All along the project, the existing form of the KARSYS approach has been tested on various sites in Switzerland and abroad in order (i) to test the applicability on real sites, (ii) to formalize methodological steps and (iii) to improve standard operations. Compared to the initial form of KARSYS (as published in 2013), semi-automatized procedures have been developed for generating conduit network and for delineating the systems catchment over the ground surface. Applications of KARSYS to numerous case studies showed that the approach reveals extremely efficient for documenting epigenic karst aquifers where karst processes are in equilibrium with hydrological base level, where contrasts of lithologies make it possible to identify karstified rocks from non-karstified rocks and where phreatic zones are of moderate extension or compartmentalized into several distinct units. For pure confined aquifers or where lithological contrasts make difficult to distinguish karstified from non-karstified rocks, KARSYS remains applicable but less fruitful. Main limitations in the applicability of KARSYS concern the precision of geological data and hydrological indications regarding karst springs (activity, mean discharge, etc.).
    As KARSYS is a conceptual approach, numerical approaches of simulation have been developed as extensions. Two types of simulation models have been designed for groundwater recharge: one for alpine regions where recharge is dominated by relief-contrasts, snow and glacier melts and one other for low-land regions where recharge are dominated by vegetation and soils/epikarst processes. Applications of these models make it possible to distinguish all the components of the recharge processes (precipitation, RET, etc., with the exception of the condensation) in the different compartments of the aquifers (storage in soils, epikarst, low permeable volumes, etc.). In addition to these recharge model, a hydraulic model for simulating flows in the conduit network has been developed. This model uses the generated conduit network and the simulated recharge as inputs to reproduce the discharge for each outlets of the flow-system. Applications of these models with a constant interaction with the 3D conceptual model of the karst aquifers make it possible to infer additional properties of flow-systems (perched conduits, thresholds, etc.). These models may now address various issues in karst hydrology (storage, impacts of construction, flood hazards, etc.).
    Another extension has been developed in the form of guidelines for mapping hydrogeological information resulting from the application of KARSYS. These guidelines promote three types of karst hydrogeological maps depending on the scale and on the issues: the karst groundwater map, the karst aquifer map and the karst flow-system map.
    Finally, this project was also the opportunity to address general questions on karst groundwater at Swiss scale: the annual recharge, the minimal low-flow storage and the seasonal storage and the expected evolution of groundwater resources with the climate changes. These works made it possible to provide insights, key-values or recommendations regarding the current dynamics of karst aquifers and their expected evolution in the coming decades. They will contribute to support decision regarding future strategies for karst groundwater management.
    Approaches and extensions which have been developed in this dissertation contribute to improve knowledge on karst aquifers in the scope of improving the sustainable management of groundwater in Switzerland.
  • Publication
    Accès libre
    Hydraulics and sedimentary processes in the karst aquifer of Milandre (Jura Mountains, Switzerland)
    (2017)
    Vuilleumier, Cécile
    ;
    ;
    Cette thèse vise à caractériser les processus sédimentaires s’opérant dans l’aquifère karstique de Milandre (Suisse), à la fois grâce à des observations de terrain à l’intérieur du réseau de conduits et à l’aide de la modélisation numérique. Un modèle de tuyaux, qui reproduit la physique du système, est développé sur la base de mesures de charges hydrauliques, de débits et de vitesses d’écoulement mesurés dans le réseau spéléologique. Les simulations d’écoulement permettent de calculer la contrainte de cisaillement limite moyenne et la vitesse de cisaillement dans les conduits, qui sont utilisées pour évaluer où et quand l’érosion et le dépôt de sédiment sont probables. Les prédictions du modèle sont comparées à des observations de terrain variées. Dans la rivière souterraine de Milandre, une station de surveillance de la sédimentation a été en fonction pendant 11 ans. La turbidité et la composition des sédiments en suspension ont été surveillées à trois sites dans le système souterrain et à l’exutoire pérenne au cours de la même période. De plus, l’évolution de la granulométrie et de la teneur en bactéries fécales de la charge sédimentaire à la source a été analysée au cours d’un événement de crue. Les simulations sont en ligne avec les observations disponibles. Le modèle conceptuel suivant est proposé : lors d’événements de faible intensité (débit maximal aux exutoires d’environ 400 L·s-1), l’essentiel de la turbidité observée aux sources provient de la remobilisation de sédiments karstiques (turbidité autochtone). La turbidité provenant de la surface (allochtone) peut atteindre la zone saturée avec un délai allant jusqu’à 3 jours, mais dans la plupart des cas elle n’est pas détectée à la source. Quand le pic de débit augmente, le délai entre le pic de crue et le pic de turbidité allochtone diminue, alors que l’intensité du pic de turbidité allochtone augmente. Les événements de crue d’intensité modérée à forte induisent donc une réponse mixte, à la fois autochtone et allochtone aux sources, alors que le signal de turbidité est fortement influencé par les processus de remobilisation de sédiment dans le système karstique. Le modèle a mis en évidence le fait que la contrainte de cisaillement limite est maximale durant le remplissage et la vidange des différents niveaux de conduits du réseau karstique. Cet effet conduit à la génération de pics secondaires de turbidité durant la phase de récession de la crue. Ces pics secondaires de turbidité ont été observés tant dans la rivière souterraine qu’aux exutoires du système. À moyen terme, le modèle prédit que les processus d’érosion et d’accumulation de sédiment sont tous les deux fréquents aux abords de la rivière souterraine. Par contre, dans les galeries épiphréatiques les plus hautes, une accumulation nette de sédiment est prévue par le modèle. D’après les observations, les flux sédimentaires sont principalement contrôlés par l’hydrodynamique du système karstique. Cependant, une composante saisonnière apparaît dans les variations de la concentration de sédiment à la source. Ce cycle annuel est attribué à une disponibilité accrue de sédiments de surface durant l’automne. En terme de composition, une augmentation pluriannuelle de la teneur en phyllosilicate dans les sédiments en suspension est observée. La concentration en phyllosilicate apparaît bien corrélée avec la température des eaux souterraines, autant à l’échelle saisonnière qu’à l’échelle pluriannuelle., This thesis aims at characterizing the sedimentary processes taking place in the karst aquifer of Milandre (Switzerland) both by direct observation inside the conduit network and through numerical modeling. A physics based pipe flow model of the downstream part of the karst system is developed on the basis of measurements of hydraulic heads, flow rates and flow velocities performed in the speleological network. The flow simulations allow to compute the mean boundary shear stress and the shear velocity in the conduits, which are used to assess when and where erosion and deposition of sediments are likely to occur. The model predictions are compared to various field observations. In the Milandre cave stream, a sedimentation monitoring station has been in operation for 11 years. The turbidity and the suspended sediment composition have been monitored at three locations in the underground system and at the perennial outlet over the same time period. Furthermore, the evolution of the grain size and fecal bacteria content of the suspended solids discharged at the spring has been analyzed over the course of a flood event. The simulations are in good agreement with the available data. Overall, the following conceptual model of sedimentary fluxes in the Milandre system is proposed: during low intensity flood events (maximum discharge at the outlets of ∼400 L·s-1), the bulk of the turbidity observed at the springs comes from the remobilization of karstic sediments (autochthonous turbidity). Soil derived (allochthonous) turbidity may reach the saturated zone with a delay of up to 3 days, but is often not detected at the spring. As the peak discharge of the event increases, the delay between the flood peak and the allochthonous turbidity peak shortens and the intensity of the allochthonous turbidity peak increases. Moderate to intense flood events thus yield a mixed autochthonous and allochthonous turbidity response at the springs, while the turbidity signal is mostly shaped by the processes of sediment remobilization in the karst system. The model highlights the fact that the mean boundary shear stress reaches a maximum during the flooding and the emptying of the different levels of conduits of the karst network. This leads to the generation of secondary turbidity peaks during flow recession, which are observed both in the cave stream and at the outlets of the system. In the medium term, the model suggests that both the accumulation and the erosion of sediments are frequent along the cave stream. In contrast, the uppermost epiphreatic passages are predicted to act as effective sediment traps. From the observed data, it appears that the sediment fluxes are mainly controlled by the hydrodynamics of the karst system. There is however a seasonal component in the variations of the sediment concentration at the spring. This annual cycle is attributed to an enhanced soil sediment availability during fall. In terms of composition, there is a pluriannual increase in the phyllosilicate content in the suspended sediment. The phyllosilicate concentration was found to be well correlated with groundwater temperature, both on a seasonal and on a pluriannual scale.
  • Publication
    Accès libre
    Geometry and hydraulic parameters of karst aquifers: a hydrodynamic modeling approach
    This thesis presents a method for characterizing flow systems in karst aquifers by acquiring quantitative information about the geometric and hydraulic parameters of a karst conduit network from spring hydrograph analysis. The investigation method applied consisted of constructing simple conceptual models of karst systems, and deducing analytical formulae describing the connection between aquifer parameters and hydrograph recession coefficient. The resulting formulae were then applied for evaluating input parameters for numerical models of the Bure aquifer (Jura, Switzerland). The comparison between model simulation results and real-world data permitted to test the applicability of the analytical formulae. The Bure test site also provided as a basis for evaluating some general characteristics of conduit networks by steady-state numerical models. Analytical formulae identified two, significantly different flow domains, depending on the overall configuration of aquifer parameters. During the baseflow recession of mature karst systems, the conductivity of karst conduits does not influence the drainage of the low-permeability matrix. In this case the drainage process is influenced by the size and hydraulic parameters of the low-permeability blocks alone. This flow condition has been defined as matrix-restrained flow regime (MRFR). During the baseflow recession of premature karst systems and the flood recession of mature systems, the recession process is dependent not only on the hydraulic parameters and the size of the low-permeability blocks, but also on conduit conduc
  • Publication
    Accès libre
    A conceptual model of flow and transport in a karst aquifer based on spatial and temporal variations of natural tracers
    (2003)
    Perrin, Jérôme
    ;
    ;
    Les aquifères karstiques représentent une importante ressource en eaux souterraines à l'échelle planétaire. Cette ressource est très vulnérable aux contaminants car les eaux transitent rapidement dans l'aquifère et les phénomènes d'atténuation sont limités. Les hydrogéologues ont développé deux approches différentes pour étudier l'écoulement et le transport des aquifères karstiques : la première infère la structure du système karstique à partir des réponses hydrauliques et chimiques à la source ; la seconde est une modélisation numérique de la réponse en utilisant une distribution théorique des paramètres d'écoulement et du transport. Ces deux approches sont insuffisamment validées par des observations de terrain détaillées. Le principal objectif de cette thèse est de combler le vide existant entre les mesures de terrain et les modèles numériques. Pour ce faire, nous avons observé les paramètres d'écoulement et de transport en différents endroits du système pour en extraire un modèle conceptuel de fonctionnement cohérent. Ce modèle a ensuite été comparé aux modèles existant dans la littérature. Le site test principal est l'aquifère karstique de Milandre situé dans le Jura tabulaire. Les traceurs naturels (ions majeurs, oxygène-18, conductivité) et le débit ont été mesurés sur la rivière souterraine, ses affluents principaux, des eaux de percolation et la source principale du système. Les paramètres furent mesurés sur le long terme afin de caractériser leur variabilité spatiale, ainsi qu'à l'échelle d'une crue afin de décrire les processus dynamiques. Des sites complémentaires (Grand Bochat et Brandt) ont été utilisés afin de compléter les mesures effectuées à la base de l'épikarst. Le modèle conceptuel proposé se structure en quatre sous-systèmes : le sol, l'épikarst, la zone non saturée et le zone phréatique. Chacun de ces sous-systèmes a ses propres particularités en terme d'écoulement et de transport. Le sol contrôle la recharge effective du système. Il contribue de manière efficace au stockage de l'eau. C'est dans cette zone que l'eau fraîchement infiltrée se mélange rapidement avec l'eau stockée. Son épaisseur contrôle l'occupation du sol : les sols épais sont généralement cultivés alors que les sols minces sont des secteurs boisés. La concentration des ions dépend de l'occupation du sol pour les paramètres liés aux contaminations (nitrate, chlorures, sulfate, potassium, sodium). De plus le sol est la source principale de CO2 qui contrôle les paramètres liés à la dissolution des calcaires. L'épikarst contribue efficacement au stockage de l'eau souterraine. A l'image d'un entonnoir, il canalise les écoulements vers les fractures perméables de la zone non saturée C'est dans ce sous-système que les paramètres associés à la dissolution sont principalement acquis. La zone non saturée se résume essentiellement à une zone transmissive qui connecte l'épikarst aux conduits sub-horizontaux de la zone phréatique. Lors des crues, les phénomènes de dissolution peuvent encore être significatifs dans cette zone. La zone phréatique est constituée d'un réseau de conduits partiellement noyés qui drainent les écoulements en direction de la source. Cette zone collecte les écoulements issus de la zone non saturée, mélange les affluents, et achemine l'eau souterraine en direction des exutoires. Le stockage dans les volumes peu perméables (VPP) de la zone phréatique semble jouer un rôle limité sur l'écoulement et le transport. Le mélange des différents affluents est un phénomène prépondérant qui influence les chimiogrammes à la source lors des événements de crue. En conditions d'étiage, l'écoulement de base est essentiellement issu des réserves de l'épikarst. Les concentrations en traceurs sont stables puisque les équilibres chimiques sont déjà atteints dans l'épikarst. Les eaux provenant des différents affluents se mélangent dans le réseau de conduits et la chimie à la source est le résultat de ce mélange. Lors des événements de crue, la non stationnarité des écoulements induit un mélange non linéaire des affluents. Les contributions respectives des affluents évoluent au cours de la crue, conditionnant les chimiogrammes à la source. En cas d'une importante infiltration, des eaux issues d'autres sources que l'épikarst participent à la crue. Dans un premier temps, l'eau du sol court-circuite l'épikarst et gagne la zone phréatique. Ses caractéristiques sont un signal isotopique tamponné et des concentrations en ions différentes de celles de l'épikarst. Si la recharge continue, l'eau fraîchement infiltrée, directement issue de l'eau de pluie, peut rejoindre également la zone phréatique. Ses caractéristiques sont un signal isotopique contrasté et des concentrations ioniques basses. La provenance des eaux participant à la crue est contrôlée par la hauteur de l'infiltration efficace correspondant à l'événement pluvieux. La dissolution du calcaire est significative pour les eaux provenant du sol et de la pluie. Les chimiogrammes sont plus influencés par les mélanges que par les processus de dissolution. D'un point de vue pratique, cette étude confirme le rôle prépondérant du sol et de l'épikarst sur le transport de solutés dans les aquifères karstiques. Cet aspect avait déjà été intégré dans les méthodes de cartographie de la vulnérabilité développées récemment (EPIK, PI, VULK), Karst aquifers represent an important groundwater resource world-wide. They are highly vulnerable to contamination due to fast transport through the system and limited attenuation of contaminants. The two main hydrogeological approaches developed for studying flow and transport are: inference of the system structure from karst spring hydrographs and chemographs; numerical modelling of flow and transport using a theoretical distribution of flow and transport field parameters. These two approaches lack of validation by detailed field measurements and observations. The main objective of this thesis is to "fill the gap" existing between field and model data. Observations of flow and transport parameters at several locations within the system were used to develop a conceptual model. This model was then compared to the existing models. The main field test site is the Milandre karst aquifer, located in the Swiss tabular Jura. Natural tracers (major ions, oxygen-18, specific conductance) and discharge were measured on the underground river, its main tributaries, percolation waters, and the main spring. These data were collected on a long-term basis in order to assess the spatial variability of the parameters, and on a short time scale (i.e. flood events) in order to investigate the dynamic processes. Complementary sites (Brandt and Grand Bochat) were used for more observations at the base of the epikarst. The proposed conceptual model considers four sub-systems: the soil zone, the epikarst, the unsaturated zone, and the phreatic zone. Each has its own specificity with respect to flow and transport. The soil zone controls the actual infiltration into the system. It contributes efficiently to groundwater storage. It mixes quickly stored water with fresh infiltrated water. Its thickness determines land-use: thick soils are generally cultivated whereas thin soils are under forested areas. The solutes concentration of soil waters depends on land-use for pollution-related parameters (nitrate, chloride, sulfate, potassium, sodium). Moreover the soil zone is the main source of CO2 which controls the limestone dissolution-related parameters. The epikarst zone contributes largely to groundwater storage. It distributes groundwater into vadose flow through conduits, and base flow through low permeability volumes (LPV) in the unsaturated zone. It is the sub-system where dissolution-related parameters are mostly acquired. The unsaturated zone is seen as a transmissive zone connecting the epikarst to the horizontal conduit network of the phreatic zone. In case of flood events, some dissolution still occurs in this sub-system. The phreatic zone is the partly flooded conduit network draining groundwater to the spring. It collects waters issued from the unsaturated zone, mixes the tributaries, and drain the water towards the discharge area. The role of phreatic storage appears to be limited for both hydraulics and transport. Tributary mixing is a prominent process that shapes spring chemographs during flood events. In steady-state conditions, base flow is mainly sustained by the epikarst reservoir. Tracer concentrations are stable as the chemical equilibrium is already reached in the epikarst. Waters issued from the different tributaries mix in the conduit network, and the spring chemistry is the result of this mixing. During flood events, transient flow induces non-linear mixing of the tributaries. The respective contributions of the tributaries change throughout the flood, and the spring chemographs vary accordingly. In case of important recharge, waters issued from other sources than the epikarst participate to the flood. First, soil water reaches the phreatic zone. Its characteristics are a dampened isotopic signal, and ionic concentrations differing from those of the epikarst. Second, fresh water directly issued from rainfall, may reach the phreatic zone. Its characteristics are a varying isotopic signal, and diluted ionic concentrations. The mixing components participating to the flood are controlled by the actual infiltration volume (or height). The limestone dissolution process is effective for the fresh and soil components of flow. However mixing processes play a more important role than dissolution for shaping the spring chemographs. From a practical point of view, the project confirmed the prominent role of the soil zone and the epikarst on the solute transport in karst systems. This was already integrated in karst vulnerability mapping methods recently developed (EPIK, PI, VULK). Key-words: karst aquifer, carbonate aquifer, Milandre test site, epikarst, infiltration, transport, isotope, nitrate, dissolution, natural tracers, mixing, chemographs, spatio-temporal variability, structure, storage, transit times, vulnerability, local scale, catchment scale.