Options
Jeannin, Pierre-Yves
Nom
Jeannin, Pierre-Yves
Affiliation principale
Email
pierre-yves.jeannin@unine.ch
Identifiants
Résultat de la recherche
Voici les éléments 1 - 6 sur 6
- PublicationAccès libreHydraulics and Turbidity Generation in the Milandre Cave (Switzerland)(2021)
; ; ;Marc HessenauerAbstractKarst aquifers may convey significant sediment fluxes, as displayed by the intense turbidity peaks commonly observed at karst springs. The understanding of the origin of the suspended solids discharged at springs is key in assessing spring vulnerability and securing drinking water quality. The mechanisms for turbidity generation and sediment transport in karst are however difficult to investigate because of the general lack of access to the karst conduits. These processes have been examined in the Milandre Cave, which hosts a karst drain of regional importance, for more than 10 years by means of turbidity monitoring both inside and at the outlets of this karst system. Additionally, the composition of the suspended load (particle‐size distribution and Escherichia coli content) has been monitored over the course of a flood event. These data are compared against a numerical simulation of the mean boundary shear stress inside the conduit network. The following conceptual model for sediment transport through the system is derived: during minor flood events, most of the turbidity comes from underground sediment remobilization, while during medium to intense flood events, soil‐derived turbidity also reaches the spring. Hydraulics in the epiphreatic zone is tightly linked with autochthonous turbidity generation (mostly during the flooding and the flushing of conduits). In comparison, allochthonous turbidity is associated with finer particles, higher E. coli, and higher UV fluorescence. This improves the overall understanding of turbidity generation and could help the monitoring and forecast of pollution events at drinking water supplies. - PublicationMétadonnées seulement
- PublicationAccès libreA quantitative method for the characterisation of karst aquifers based on spring hydrograph analysisThis paper presents a method for characterizing flow systems in karst aquifers by acquiring quantitative information about the geometric and hydraulic aquifer parameters from spring hydrograph analysis. Numerical sensitivity analyses identified two fundamentally different flow domains, depending on the overall configuration of aquifer parameters. These two domains have been quantitatively characterized by deducing analytical solutions for the global hydraulic response of simple two-dimensional model geometries.
During the baseflow recession of mature karst systems, the hydraulic parameters of karst conduits do not influence the drainage of the low-permeability matrix. In this case the drainage process is influenced by the size and hydraulic parameters of the low-permeability blocks alone. This flow condition has been defined as matrix-restrained flow regime (MRFR). During the baseflow recession of early karst systems and fissured systems, as well as the flood recession of mature systems, the recession process depends on the hydraulic parameters and the size of the low-permeability blocks, conduit conductivity and the total extent of the aquifer. This flow condition has been defined as conduit-influenced flow regime (CIFR).
Analytical formulae demonstrated the limitations of equivalent models. While equivalent discrete-continuum models of early karst systems may reflect their real hydraulic response, there is only one adequate parameter configuration for mature systems that yields appropriate recession coefficient. Consequently, equivalent discrete-continuum models are inadequate for simulating global response of mature karst systems. The recession coefficient of equivalent porous medium models corresponds to the transition between matrix-restrained and conduit-influenced flow. Consequently, equivalent porous medium models yield corrupted hydrographs both in mature and early systems, and this approach is basically inadequate for modelling global response of karst aquifers. - PublicationAccès libreThe VULK analytical transport model and mapping method(2004)
; ;Goldscheider, Nico; ; ;Pochon, Alain ;Sinreich, Michael; - PublicationMétadonnées seulement
- PublicationMétadonnées seulement